मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

2\left(x^{2}-4x+3\right)
2 के गुणनखंड बनाएँ.
a+b=-4 ab=1\times 3=3
x^{2}-4x+3 पर विचार करें. समूहीकरण द्वारा व्यंजक को फ़ैक्टर करें. सबसे पहले, व्यंजक को x^{2}+ax+bx+3 के रूप में फिर से लिखा जाना आवश्यक है. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
a=-3 b=-1
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूँकि a+b नकारात्मक है, a और b दोनों नकारात्मक हैं. केवल ऐसी जोड़ी सिस्टम समाधान है.
\left(x^{2}-3x\right)+\left(-x+3\right)
x^{2}-4x+3 को \left(x^{2}-3x\right)+\left(-x+3\right) के रूप में फिर से लिखें.
x\left(x-3\right)-\left(x-3\right)
पहले समूह में x के और दूसरे समूह में -1 को गुणनखंड बनाएँ.
\left(x-3\right)\left(x-1\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-3 के गुणनखंड बनाएँ.
2\left(x-3\right)\left(x-1\right)
पूर्ण फ़ैक्टर व्यंजक को फिर से लिखें.
2x^{2}-8x+6=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 6}}{2\times 2}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 6}}{2\times 2}
वर्गमूल -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 6}}{2\times 2}
-4 को 2 बार गुणा करें.
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2\times 2}
-8 को 6 बार गुणा करें.
x=\frac{-\left(-8\right)±\sqrt{16}}{2\times 2}
64 में -48 को जोड़ें.
x=\frac{-\left(-8\right)±4}{2\times 2}
16 का वर्गमूल लें.
x=\frac{8±4}{2\times 2}
-8 का विपरीत 8 है.
x=\frac{8±4}{4}
2 को 2 बार गुणा करें.
x=\frac{12}{4}
± के धन में होने पर अब समीकरण x=\frac{8±4}{4} को हल करें. 8 में 4 को जोड़ें.
x=3
4 को 12 से विभाजित करें.
x=\frac{4}{4}
± के ऋण में होने पर अब समीकरण x=\frac{8±4}{4} को हल करें. 8 में से 4 को घटाएं.
x=1
4 को 4 से विभाजित करें.
2x^{2}-8x+6=2\left(x-3\right)\left(x-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए 3 और x_{2} के लिए 1 स्थानापन्न है.