मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

2x^{2}+7x-6=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-7±\sqrt{7^{2}-4\times 2\left(-6\right)}}{2\times 2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 2, b के लिए 7 और द्विघात सूत्र में c के लिए -6, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\left(-6\right)}}{2\times 2}
वर्गमूल 7.
x=\frac{-7±\sqrt{49-8\left(-6\right)}}{2\times 2}
-4 को 2 बार गुणा करें.
x=\frac{-7±\sqrt{49+48}}{2\times 2}
-8 को -6 बार गुणा करें.
x=\frac{-7±\sqrt{97}}{2\times 2}
49 में 48 को जोड़ें.
x=\frac{-7±\sqrt{97}}{4}
2 को 2 बार गुणा करें.
x=\frac{\sqrt{97}-7}{4}
± के धन में होने पर अब समीकरण x=\frac{-7±\sqrt{97}}{4} को हल करें. -7 में \sqrt{97} को जोड़ें.
x=\frac{-\sqrt{97}-7}{4}
± के ऋण में होने पर अब समीकरण x=\frac{-7±\sqrt{97}}{4} को हल करें. -7 में से \sqrt{97} को घटाएं.
x=\frac{\sqrt{97}-7}{4} x=\frac{-\sqrt{97}-7}{4}
अब समीकरण का समाधान हो गया है.
2x^{2}+7x-6=0
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
2x^{2}+7x-6-\left(-6\right)=-\left(-6\right)
समीकरण के दोनों ओर 6 जोड़ें.
2x^{2}+7x=-\left(-6\right)
-6 को इसी से घटाने से 0 मिलता है.
2x^{2}+7x=6
0 में से -6 को घटाएं.
\frac{2x^{2}+7x}{2}=\frac{6}{2}
दोनों ओर 2 से विभाजन करें.
x^{2}+\frac{7}{2}x=\frac{6}{2}
2 से विभाजित करना 2 से गुणा करने को पूर्ववत् करता है.
x^{2}+\frac{7}{2}x=3
2 को 6 से विभाजित करें.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=3+\left(\frac{7}{4}\right)^{2}
\frac{7}{4} प्राप्त करने के लिए x पद के गुणांक \frac{7}{2} को 2 से भाग दें. फिर समीकरण के दोनों ओर \frac{7}{4} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+\frac{7}{2}x+\frac{49}{16}=3+\frac{49}{16}
भिन्न के अंश और हर दोनों का वर्गमूल करके \frac{7}{4} का वर्ग करें.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{97}{16}
3 में \frac{49}{16} को जोड़ें.
\left(x+\frac{7}{4}\right)^{2}=\frac{97}{16}
गुणक x^{2}+\frac{7}{2}x+\frac{49}{16}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{97}{16}}
समीकरण के दोनों ओर का वर्गमूल लें.
x+\frac{7}{4}=\frac{\sqrt{97}}{4} x+\frac{7}{4}=-\frac{\sqrt{97}}{4}
सरल बनाएं.
x=\frac{\sqrt{97}-7}{4} x=\frac{-\sqrt{97}-7}{4}
समीकरण के दोनों ओर से \frac{7}{4} घटाएं.