मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

2\left(x^{2}+10x+24\right)
2 के गुणनखंड बनाएँ.
a+b=10 ab=1\times 24=24
x^{2}+10x+24 पर विचार करें. समूहीकरण द्वारा व्यंजक को फ़ैक्टर करें. सबसे पहले, व्यंजक को x^{2}+ax+bx+24 के रूप में फिर से लिखा जाना आवश्यक है. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,24 2,12 3,8 4,6
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूंकि a+b सकारात्मक है, a और b दोनों सकारात्मक हैं. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद 24 देते हैं.
1+24=25 2+12=14 3+8=11 4+6=10
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=4 b=6
हल वह जोड़ी है जो 10 योग देती है.
\left(x^{2}+4x\right)+\left(6x+24\right)
x^{2}+10x+24 को \left(x^{2}+4x\right)+\left(6x+24\right) के रूप में फिर से लिखें.
x\left(x+4\right)+6\left(x+4\right)
पहले समूह में x के और दूसरे समूह में 6 को गुणनखंड बनाएँ.
\left(x+4\right)\left(x+6\right)
विभाजन के गुण का उपयोग करके सामान्य पद x+4 के गुणनखंड बनाएँ.
2\left(x+4\right)\left(x+6\right)
पूर्ण फ़ैक्टर व्यंजक को फिर से लिखें.
2x^{2}+20x+48=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-20±\sqrt{20^{2}-4\times 2\times 48}}{2\times 2}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-20±\sqrt{400-4\times 2\times 48}}{2\times 2}
वर्गमूल 20.
x=\frac{-20±\sqrt{400-8\times 48}}{2\times 2}
-4 को 2 बार गुणा करें.
x=\frac{-20±\sqrt{400-384}}{2\times 2}
-8 को 48 बार गुणा करें.
x=\frac{-20±\sqrt{16}}{2\times 2}
400 में -384 को जोड़ें.
x=\frac{-20±4}{2\times 2}
16 का वर्गमूल लें.
x=\frac{-20±4}{4}
2 को 2 बार गुणा करें.
x=-\frac{16}{4}
± के धन में होने पर अब समीकरण x=\frac{-20±4}{4} को हल करें. -20 में 4 को जोड़ें.
x=-4
4 को -16 से विभाजित करें.
x=-\frac{24}{4}
± के ऋण में होने पर अब समीकरण x=\frac{-20±4}{4} को हल करें. -20 में से 4 को घटाएं.
x=-6
4 को -24 से विभाजित करें.
2x^{2}+20x+48=2\left(x-\left(-4\right)\right)\left(x-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए -4 और x_{2} के लिए -6 स्थानापन्न है.
2x^{2}+20x+48=2\left(x+4\right)\left(x+6\right)
प्रपत्र के सभी व्यंजकों को p-\left(-q\right) से p+q तक सरलीकृत करें.