मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

3x+x^{2}=180
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
3x+x^{2}-180=0
दोनों ओर से 180 घटाएँ.
x^{2}+3x-180=0
बहुपद को मानक रूप में रखने के लिए इसे पुनर्व्यवस्थित करें. टर्म को उच्चतम से निम्नतम घात के क्रम में रखें.
a+b=3 ab=-180
समीकरण को हल करने के लिए, सूत्र x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) का उपयोग करके x^{2}+3x-180 फ़ैक्टर. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,180 -2,90 -3,60 -4,45 -5,36 -6,30 -9,20 -10,18 -12,15
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b धनात्मक है, धनात्मक संख्या में ऋणात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -180 देते हैं.
-1+180=179 -2+90=88 -3+60=57 -4+45=41 -5+36=31 -6+30=24 -9+20=11 -10+18=8 -12+15=3
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-12 b=15
हल वह जोड़ी है जो 3 योग देती है.
\left(x-12\right)\left(x+15\right)
प्राप्त किए गए मानों का उपयोग कर \left(x+a\right)\left(x+b\right) फ़ैक्टरी व्यंजक को फिर से लिखें.
x=12 x=-15
समीकरण समाधानों को ढूँढने के लिए, x-12=0 और x+15=0 को हल करें.
3x+x^{2}=180
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
3x+x^{2}-180=0
दोनों ओर से 180 घटाएँ.
x^{2}+3x-180=0
बहुपद को मानक रूप में रखने के लिए इसे पुनर्व्यवस्थित करें. टर्म को उच्चतम से निम्नतम घात के क्रम में रखें.
a+b=3 ab=1\left(-180\right)=-180
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर x^{2}+ax+bx-180 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,180 -2,90 -3,60 -4,45 -5,36 -6,30 -9,20 -10,18 -12,15
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b धनात्मक है, धनात्मक संख्या में ऋणात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -180 देते हैं.
-1+180=179 -2+90=88 -3+60=57 -4+45=41 -5+36=31 -6+30=24 -9+20=11 -10+18=8 -12+15=3
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-12 b=15
हल वह जोड़ी है जो 3 योग देती है.
\left(x^{2}-12x\right)+\left(15x-180\right)
x^{2}+3x-180 को \left(x^{2}-12x\right)+\left(15x-180\right) के रूप में फिर से लिखें.
x\left(x-12\right)+15\left(x-12\right)
पहले समूह में x के और दूसरे समूह में 15 को गुणनखंड बनाएँ.
\left(x-12\right)\left(x+15\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-12 के गुणनखंड बनाएँ.
x=12 x=-15
समीकरण समाधानों को ढूँढने के लिए, x-12=0 और x+15=0 को हल करें.
3x+x^{2}=180
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
3x+x^{2}-180=0
दोनों ओर से 180 घटाएँ.
x^{2}+3x-180=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-3±\sqrt{3^{2}-4\left(-180\right)}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए 3 और द्विघात सूत्र में c के लिए -180, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-180\right)}}{2}
वर्गमूल 3.
x=\frac{-3±\sqrt{9+720}}{2}
-4 को -180 बार गुणा करें.
x=\frac{-3±\sqrt{729}}{2}
9 में 720 को जोड़ें.
x=\frac{-3±27}{2}
729 का वर्गमूल लें.
x=\frac{24}{2}
± के धन में होने पर अब समीकरण x=\frac{-3±27}{2} को हल करें. -3 में 27 को जोड़ें.
x=12
2 को 24 से विभाजित करें.
x=-\frac{30}{2}
± के ऋण में होने पर अब समीकरण x=\frac{-3±27}{2} को हल करें. -3 में से 27 को घटाएं.
x=-15
2 को -30 से विभाजित करें.
x=12 x=-15
अब समीकरण का समाधान हो गया है.
3x+x^{2}=180
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
x^{2}+3x=180
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=180+\left(\frac{3}{2}\right)^{2}
\frac{3}{2} प्राप्त करने के लिए x पद के गुणांक 3 को 2 से भाग दें. फिर समीकरण के दोनों ओर \frac{3}{2} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+3x+\frac{9}{4}=180+\frac{9}{4}
भिन्न के अंश और हर दोनों का वर्गमूल करके \frac{3}{2} का वर्ग करें.
x^{2}+3x+\frac{9}{4}=\frac{729}{4}
180 में \frac{9}{4} को जोड़ें.
\left(x+\frac{3}{2}\right)^{2}=\frac{729}{4}
गुणक x^{2}+3x+\frac{9}{4}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{729}{4}}
समीकरण के दोनों ओर का वर्गमूल लें.
x+\frac{3}{2}=\frac{27}{2} x+\frac{3}{2}=-\frac{27}{2}
सरल बनाएं.
x=12 x=-15
समीकरण के दोनों ओर से \frac{3}{2} घटाएं.