मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

3\left(5x^{2}+4x+3\right)
3 के गुणनखंड बनाएँ. बहुपद 5x^{2}+4x+3 फ़ैक्टर नहीं किया गया क्योंकि इसमें कोई तर्कसंगत रूट नहीं हैं.
15x^{2}+12x+9=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-12±\sqrt{12^{2}-4\times 15\times 9}}{2\times 15}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-12±\sqrt{144-4\times 15\times 9}}{2\times 15}
वर्गमूल 12.
x=\frac{-12±\sqrt{144-60\times 9}}{2\times 15}
-4 को 15 बार गुणा करें.
x=\frac{-12±\sqrt{144-540}}{2\times 15}
-60 को 9 बार गुणा करें.
x=\frac{-12±\sqrt{-396}}{2\times 15}
144 में -540 को जोड़ें.
15x^{2}+12x+9
चूँकि वास्तविक फ़ील्ड में ऋणात्मक संख्या का वर्गमूल निर्धारित नहीं है, इसलिए कोई हल नहीं है. द्विघात बहुपद को फ़ैक्टर नहीं किया जा सकता.