मुख्य सामग्री पर जाएं
p के लिए हल करें
Tick mark Image

वेब खोज से समान सवाल

साझा करें

10000+100+8=3p^{2}-190+11
2 की घात की 100 से गणना करें और 10000 प्राप्त करें.
10100+8=3p^{2}-190+11
10100 को प्राप्त करने के लिए 10000 और 100 को जोड़ें.
10108=3p^{2}-190+11
10108 को प्राप्त करने के लिए 10100 और 8 को जोड़ें.
10108=3p^{2}-179
-179 को प्राप्त करने के लिए -190 और 11 को जोड़ें.
3p^{2}-179=10108
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
3p^{2}=10108+179
दोनों ओर 179 जोड़ें.
3p^{2}=10287
10287 को प्राप्त करने के लिए 10108 और 179 को जोड़ें.
p^{2}=\frac{10287}{3}
दोनों ओर 3 से विभाजन करें.
p^{2}=3429
3429 प्राप्त करने के लिए 10287 को 3 से विभाजित करें.
p=3\sqrt{381} p=-3\sqrt{381}
समीकरण के दोनों ओर का वर्गमूल लें.
10000+100+8=3p^{2}-190+11
2 की घात की 100 से गणना करें और 10000 प्राप्त करें.
10100+8=3p^{2}-190+11
10100 को प्राप्त करने के लिए 10000 और 100 को जोड़ें.
10108=3p^{2}-190+11
10108 को प्राप्त करने के लिए 10100 और 8 को जोड़ें.
10108=3p^{2}-179
-179 को प्राप्त करने के लिए -190 और 11 को जोड़ें.
3p^{2}-179=10108
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
3p^{2}-179-10108=0
दोनों ओर से 10108 घटाएँ.
3p^{2}-10287=0
-10287 प्राप्त करने के लिए 10108 में से -179 घटाएं.
p=\frac{0±\sqrt{0^{2}-4\times 3\left(-10287\right)}}{2\times 3}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 3, b के लिए 0 और द्विघात सूत्र में c के लिए -10287, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\times 3\left(-10287\right)}}{2\times 3}
वर्गमूल 0.
p=\frac{0±\sqrt{-12\left(-10287\right)}}{2\times 3}
-4 को 3 बार गुणा करें.
p=\frac{0±\sqrt{123444}}{2\times 3}
-12 को -10287 बार गुणा करें.
p=\frac{0±18\sqrt{381}}{2\times 3}
123444 का वर्गमूल लें.
p=\frac{0±18\sqrt{381}}{6}
2 को 3 बार गुणा करें.
p=3\sqrt{381}
± के धन में होने पर अब समीकरण p=\frac{0±18\sqrt{381}}{6} को हल करें.
p=-3\sqrt{381}
± के ऋण में होने पर अब समीकरण p=\frac{0±18\sqrt{381}}{6} को हल करें.
p=3\sqrt{381} p=-3\sqrt{381}
अब समीकरण का समाधान हो गया है.