गुणनखंड निकालें
5\left(x-2\right)\left(2x-3\right)
मूल्यांकन करें
5\left(x-2\right)\left(2x-3\right)
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
5\left(2x^{2}-7x+6\right)
5 के गुणनखंड बनाएँ.
a+b=-7 ab=2\times 6=12
2x^{2}-7x+6 पर विचार करें. समूहीकरण द्वारा व्यंजक को फ़ैक्टर करें. सबसे पहले, व्यंजक को 2x^{2}+ax+bx+6 के रूप में फिर से लिखा जाना आवश्यक है. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,-12 -2,-6 -3,-4
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूँकि a+b नकारात्मक है, a और b दोनों नकारात्मक हैं. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद 12 देते हैं.
-1-12=-13 -2-6=-8 -3-4=-7
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-4 b=-3
हल वह जोड़ी है जो -7 योग देती है.
\left(2x^{2}-4x\right)+\left(-3x+6\right)
2x^{2}-7x+6 को \left(2x^{2}-4x\right)+\left(-3x+6\right) के रूप में फिर से लिखें.
2x\left(x-2\right)-3\left(x-2\right)
पहले समूह में 2x के और दूसरे समूह में -3 को गुणनखंड बनाएँ.
\left(x-2\right)\left(2x-3\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-2 के गुणनखंड बनाएँ.
5\left(x-2\right)\left(2x-3\right)
पूर्ण फ़ैक्टर व्यंजक को फिर से लिखें.
10x^{2}-35x+30=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\times 10\times 30}}{2\times 10}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-35\right)±\sqrt{1225-4\times 10\times 30}}{2\times 10}
वर्गमूल -35.
x=\frac{-\left(-35\right)±\sqrt{1225-40\times 30}}{2\times 10}
-4 को 10 बार गुणा करें.
x=\frac{-\left(-35\right)±\sqrt{1225-1200}}{2\times 10}
-40 को 30 बार गुणा करें.
x=\frac{-\left(-35\right)±\sqrt{25}}{2\times 10}
1225 में -1200 को जोड़ें.
x=\frac{-\left(-35\right)±5}{2\times 10}
25 का वर्गमूल लें.
x=\frac{35±5}{2\times 10}
-35 का विपरीत 35 है.
x=\frac{35±5}{20}
2 को 10 बार गुणा करें.
x=\frac{40}{20}
± के धन में होने पर अब समीकरण x=\frac{35±5}{20} को हल करें. 35 में 5 को जोड़ें.
x=2
20 को 40 से विभाजित करें.
x=\frac{30}{20}
± के ऋण में होने पर अब समीकरण x=\frac{35±5}{20} को हल करें. 35 में से 5 को घटाएं.
x=\frac{3}{2}
10 को निकालकर और रद्द करके भिन्न \frac{30}{20} को न्यूनतम पदों तक कम करें.
10x^{2}-35x+30=10\left(x-2\right)\left(x-\frac{3}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए 2 और x_{2} के लिए \frac{3}{2} स्थानापन्न है.
10x^{2}-35x+30=10\left(x-2\right)\times \frac{2x-3}{2}
उभयनिष्ठ हर ढूँढकर और अंशों को घटाकर x में से \frac{3}{2} को घटाएँ. फिर यदि संभव हो तो भिन्न को न्यूनतम पद तक कम करें.
10x^{2}-35x+30=5\left(x-2\right)\left(2x-3\right)
10 और 2 में महत्तम समापवर्तक 2 को रद्द कर दें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}