x के लिए हल करें
x=2.6
x=-2.6
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
6.76=x^{2}
6.76 प्राप्त करने के लिए 1.69 और 4 का गुणा करें.
x^{2}=6.76
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
x^{2}-6.76=0
दोनों ओर से 6.76 घटाएँ.
\left(x-\frac{13}{5}\right)\left(x+\frac{13}{5}\right)=0
x^{2}-6.76 पर विचार करें. x^{2}-6.76 को x^{2}-\left(\frac{13}{5}\right)^{2} के रूप में फिर से लिखें. वर्गों का अंतर को इस नियम को उपयोग करके भाज्य किया जा सकता है: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{13}{5} x=-\frac{13}{5}
समीकरण समाधानों को ढूँढने के लिए, x-\frac{13}{5}=0 और x+\frac{13}{5}=0 को हल करें.
6.76=x^{2}
6.76 प्राप्त करने के लिए 1.69 और 4 का गुणा करें.
x^{2}=6.76
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
x=\frac{13}{5} x=-\frac{13}{5}
समीकरण के दोनों ओर का वर्गमूल लें.
6.76=x^{2}
6.76 प्राप्त करने के लिए 1.69 और 4 का गुणा करें.
x^{2}=6.76
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
x^{2}-6.76=0
दोनों ओर से 6.76 घटाएँ.
x=\frac{0±\sqrt{0^{2}-4\left(-6.76\right)}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए 0 और द्विघात सूत्र में c के लिए -6.76, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-6.76\right)}}{2}
वर्गमूल 0.
x=\frac{0±\sqrt{27.04}}{2}
-4 को -6.76 बार गुणा करें.
x=\frac{0±\frac{26}{5}}{2}
27.04 का वर्गमूल लें.
x=\frac{13}{5}
± के धन में होने पर अब समीकरण x=\frac{0±\frac{26}{5}}{2} को हल करें.
x=-\frac{13}{5}
± के ऋण में होने पर अब समीकरण x=\frac{0±\frac{26}{5}}{2} को हल करें.
x=\frac{13}{5} x=-\frac{13}{5}
अब समीकरण का समाधान हो गया है.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}