x के लिए हल करें
x=-3
x=1
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
\left(-x\right)x+2\left(-x\right)+3=0
x+2 से -x गुणा करने हेतु बंटन के गुण का उपयोग करें.
-x^{2}+2\left(-1\right)x+3=0
x^{2} प्राप्त करने के लिए x और x का गुणा करें.
-x^{2}-2x+3=0
-2 प्राप्त करने के लिए 2 और -1 का गुणा करें.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न -1, b के लिए -2 और द्विघात सूत्र में c के लिए 3, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
वर्गमूल -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 3}}{2\left(-1\right)}
-4 को -1 बार गुणा करें.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-1\right)}
4 को 3 बार गुणा करें.
x=\frac{-\left(-2\right)±\sqrt{16}}{2\left(-1\right)}
4 में 12 को जोड़ें.
x=\frac{-\left(-2\right)±4}{2\left(-1\right)}
16 का वर्गमूल लें.
x=\frac{2±4}{2\left(-1\right)}
-2 का विपरीत 2 है.
x=\frac{2±4}{-2}
2 को -1 बार गुणा करें.
x=\frac{6}{-2}
± के धन में होने पर अब समीकरण x=\frac{2±4}{-2} को हल करें. 2 में 4 को जोड़ें.
x=-3
-2 को 6 से विभाजित करें.
x=-\frac{2}{-2}
± के ऋण में होने पर अब समीकरण x=\frac{2±4}{-2} को हल करें. 2 में से 4 को घटाएं.
x=1
-2 को -2 से विभाजित करें.
x=-3 x=1
अब समीकरण का समाधान हो गया है.
\left(-x\right)x+2\left(-x\right)+3=0
x+2 से -x गुणा करने हेतु बंटन के गुण का उपयोग करें.
\left(-x\right)x+2\left(-x\right)=-3
दोनों ओर से 3 घटाएँ. शून्य में से कुछ भी घटाने पर इसका ऋणात्मक मान प्राप्त होता है.
-x^{2}+2\left(-1\right)x=-3
x^{2} प्राप्त करने के लिए x और x का गुणा करें.
-x^{2}-2x=-3
-2 प्राप्त करने के लिए 2 और -1 का गुणा करें.
\frac{-x^{2}-2x}{-1}=-\frac{3}{-1}
दोनों ओर -1 से विभाजन करें.
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{3}{-1}
-1 से विभाजित करना -1 से गुणा करने को पूर्ववत् करता है.
x^{2}+2x=-\frac{3}{-1}
-1 को -2 से विभाजित करें.
x^{2}+2x=3
-1 को -3 से विभाजित करें.
x^{2}+2x+1^{2}=3+1^{2}
1 प्राप्त करने के लिए x पद के गुणांक 2 को 2 से भाग दें. फिर समीकरण के दोनों ओर 1 का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+2x+1=3+1
वर्गमूल 1.
x^{2}+2x+1=4
3 में 1 को जोड़ें.
\left(x+1\right)^{2}=4
गुणक x^{2}+2x+1. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
समीकरण के दोनों ओर का वर्गमूल लें.
x+1=2 x+1=-2
सरल बनाएं.
x=1 x=-3
समीकरण के दोनों ओर से 1 घटाएं.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}