मुख्य सामग्री पर जाएं
x के लिए हल करें (जटिल समाधान)
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

-x^{2}-x-1=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न -1, b के लिए -1 और द्विघात सूत्र में c के लिए -1, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4\left(-1\right)}}{2\left(-1\right)}
-4 को -1 बार गुणा करें.
x=\frac{-\left(-1\right)±\sqrt{1-4}}{2\left(-1\right)}
4 को -1 बार गुणा करें.
x=\frac{-\left(-1\right)±\sqrt{-3}}{2\left(-1\right)}
1 में -4 को जोड़ें.
x=\frac{-\left(-1\right)±\sqrt{3}i}{2\left(-1\right)}
-3 का वर्गमूल लें.
x=\frac{1±\sqrt{3}i}{2\left(-1\right)}
-1 का विपरीत 1 है.
x=\frac{1±\sqrt{3}i}{-2}
2 को -1 बार गुणा करें.
x=\frac{1+\sqrt{3}i}{-2}
± के धन में होने पर अब समीकरण x=\frac{1±\sqrt{3}i}{-2} को हल करें. 1 में i\sqrt{3} को जोड़ें.
x=\frac{-\sqrt{3}i-1}{2}
-2 को 1+i\sqrt{3} से विभाजित करें.
x=\frac{-\sqrt{3}i+1}{-2}
± के ऋण में होने पर अब समीकरण x=\frac{1±\sqrt{3}i}{-2} को हल करें. 1 में से i\sqrt{3} को घटाएं.
x=\frac{-1+\sqrt{3}i}{2}
-2 को 1-i\sqrt{3} से विभाजित करें.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
अब समीकरण का समाधान हो गया है.
-x^{2}-x-1=0
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
-x^{2}-x-1-\left(-1\right)=-\left(-1\right)
समीकरण के दोनों ओर 1 जोड़ें.
-x^{2}-x=-\left(-1\right)
-1 को इसी से घटाने से 0 मिलता है.
-x^{2}-x=1
0 में से -1 को घटाएं.
\frac{-x^{2}-x}{-1}=\frac{1}{-1}
दोनों ओर -1 से विभाजन करें.
x^{2}+\left(-\frac{1}{-1}\right)x=\frac{1}{-1}
-1 से विभाजित करना -1 से गुणा करने को पूर्ववत् करता है.
x^{2}+x=\frac{1}{-1}
-1 को -1 से विभाजित करें.
x^{2}+x=-1
-1 को 1 से विभाजित करें.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
\frac{1}{2} प्राप्त करने के लिए x पद के गुणांक 1 को 2 से भाग दें. फिर समीकरण के दोनों ओर \frac{1}{2} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
भिन्न के अंश और हर दोनों का वर्गमूल करके \frac{1}{2} का वर्ग करें.
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
-1 में \frac{1}{4} को जोड़ें.
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
गुणक x^{2}+x+\frac{1}{4}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
समीकरण के दोनों ओर का वर्गमूल लें.
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
सरल बनाएं.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
समीकरण के दोनों ओर से \frac{1}{2} घटाएं.