मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

-x^{2}+4x-x=-4
दोनों ओर से x घटाएँ.
-x^{2}+3x=-4
3x प्राप्त करने के लिए 4x और -x संयोजित करें.
-x^{2}+3x+4=0
दोनों ओर 4 जोड़ें.
a+b=3 ab=-4=-4
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर -x^{2}+ax+bx+4 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,4 -2,2
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b धनात्मक है, धनात्मक संख्या में ऋणात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -4 देते हैं.
-1+4=3 -2+2=0
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=4 b=-1
हल वह जोड़ी है जो 3 योग देती है.
\left(-x^{2}+4x\right)+\left(-x+4\right)
-x^{2}+3x+4 को \left(-x^{2}+4x\right)+\left(-x+4\right) के रूप में फिर से लिखें.
-x\left(x-4\right)-\left(x-4\right)
पहले समूह में -x के और दूसरे समूह में -1 को गुणनखंड बनाएँ.
\left(x-4\right)\left(-x-1\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-4 के गुणनखंड बनाएँ.
x=4 x=-1
समीकरण समाधानों को ढूँढने के लिए, x-4=0 और -x-1=0 को हल करें.
-x^{2}+4x-x=-4
दोनों ओर से x घटाएँ.
-x^{2}+3x=-4
3x प्राप्त करने के लिए 4x और -x संयोजित करें.
-x^{2}+3x+4=0
दोनों ओर 4 जोड़ें.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न -1, b के लिए 3 और द्विघात सूत्र में c के लिए 4, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 4}}{2\left(-1\right)}
वर्गमूल 3.
x=\frac{-3±\sqrt{9+4\times 4}}{2\left(-1\right)}
-4 को -1 बार गुणा करें.
x=\frac{-3±\sqrt{9+16}}{2\left(-1\right)}
4 को 4 बार गुणा करें.
x=\frac{-3±\sqrt{25}}{2\left(-1\right)}
9 में 16 को जोड़ें.
x=\frac{-3±5}{2\left(-1\right)}
25 का वर्गमूल लें.
x=\frac{-3±5}{-2}
2 को -1 बार गुणा करें.
x=\frac{2}{-2}
± के धन में होने पर अब समीकरण x=\frac{-3±5}{-2} को हल करें. -3 में 5 को जोड़ें.
x=-1
-2 को 2 से विभाजित करें.
x=-\frac{8}{-2}
± के ऋण में होने पर अब समीकरण x=\frac{-3±5}{-2} को हल करें. -3 में से 5 को घटाएं.
x=4
-2 को -8 से विभाजित करें.
x=-1 x=4
अब समीकरण का समाधान हो गया है.
-x^{2}+4x-x=-4
दोनों ओर से x घटाएँ.
-x^{2}+3x=-4
3x प्राप्त करने के लिए 4x और -x संयोजित करें.
\frac{-x^{2}+3x}{-1}=-\frac{4}{-1}
दोनों ओर -1 से विभाजन करें.
x^{2}+\frac{3}{-1}x=-\frac{4}{-1}
-1 से विभाजित करना -1 से गुणा करने को पूर्ववत् करता है.
x^{2}-3x=-\frac{4}{-1}
-1 को 3 से विभाजित करें.
x^{2}-3x=4
-1 को -4 से विभाजित करें.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} प्राप्त करने के लिए x पद के गुणांक -3 को 2 से भाग दें. फिर समीकरण के दोनों ओर -\frac{3}{2} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
भिन्न के अंश और हर दोनों का वर्गमूल करके -\frac{3}{2} का वर्ग करें.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
4 में \frac{9}{4} को जोड़ें.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
गुणक x^{2}-3x+\frac{9}{4}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
समीकरण के दोनों ओर का वर्गमूल लें.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
सरल बनाएं.
x=4 x=-1
समीकरण के दोनों ओर \frac{3}{2} जोड़ें.