x के लिए हल करें
x=-6
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
x^{2}+12x=-36
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
x^{2}+12x+36=0
दोनों ओर 36 जोड़ें.
a+b=12 ab=36
समीकरण को हल करने के लिए, सूत्र x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) का उपयोग करके x^{2}+12x+36 फ़ैक्टर. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,36 2,18 3,12 4,9 6,6
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूंकि a+b सकारात्मक है, a और b दोनों सकारात्मक हैं. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद 36 देते हैं.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=6 b=6
हल वह जोड़ी है जो 12 योग देती है.
\left(x+6\right)\left(x+6\right)
प्राप्त किए गए मानों का उपयोग कर \left(x+a\right)\left(x+b\right) फ़ैक्टरी व्यंजक को फिर से लिखें.
\left(x+6\right)^{2}
द्विपद वर्ग के रूप में फिर से लिखें.
x=-6
समीकरण के हल ढूँढने के लिए, x+6=0 को हल करें.
x^{2}+12x=-36
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
x^{2}+12x+36=0
दोनों ओर 36 जोड़ें.
a+b=12 ab=1\times 36=36
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर x^{2}+ax+bx+36 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,36 2,18 3,12 4,9 6,6
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूंकि a+b सकारात्मक है, a और b दोनों सकारात्मक हैं. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद 36 देते हैं.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=6 b=6
हल वह जोड़ी है जो 12 योग देती है.
\left(x^{2}+6x\right)+\left(6x+36\right)
x^{2}+12x+36 को \left(x^{2}+6x\right)+\left(6x+36\right) के रूप में फिर से लिखें.
x\left(x+6\right)+6\left(x+6\right)
पहले समूह में x के और दूसरे समूह में 6 को गुणनखंड बनाएँ.
\left(x+6\right)\left(x+6\right)
विभाजन के गुण का उपयोग करके सामान्य पद x+6 के गुणनखंड बनाएँ.
\left(x+6\right)^{2}
द्विपद वर्ग के रूप में फिर से लिखें.
x=-6
समीकरण के हल ढूँढने के लिए, x+6=0 को हल करें.
x^{2}+12x=-36
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
x^{2}+12x+36=0
दोनों ओर 36 जोड़ें.
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए 12 और द्विघात सूत्र में c के लिए 36, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 36}}{2}
वर्गमूल 12.
x=\frac{-12±\sqrt{144-144}}{2}
-4 को 36 बार गुणा करें.
x=\frac{-12±\sqrt{0}}{2}
144 में -144 को जोड़ें.
x=-\frac{12}{2}
0 का वर्गमूल लें.
x=-6
2 को -12 से विभाजित करें.
x^{2}+12x=-36
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
x^{2}+12x+6^{2}=-36+6^{2}
6 प्राप्त करने के लिए x पद के गुणांक 12 को 2 से भाग दें. फिर समीकरण के दोनों ओर 6 का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+12x+36=-36+36
वर्गमूल 6.
x^{2}+12x+36=0
-36 में 36 को जोड़ें.
\left(x+6\right)^{2}=0
गुणक x^{2}+12x+36. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+6\right)^{2}}=\sqrt{0}
समीकरण के दोनों ओर का वर्गमूल लें.
x+6=0 x+6=0
सरल बनाएं.
x=-6 x=-6
समीकरण के दोनों ओर से 6 घटाएं.
x=-6
अब समीकरण का समाधान हो गया है. हल समान होते हैं.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}