x के लिए हल करें
x=1
x=0
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
-18x^{2}+18x=0
x-1 से -18x गुणा करने हेतु बंटन के गुण का उपयोग करें.
x\left(-18x+18\right)=0
x के गुणनखंड बनाएँ.
x=0 x=1
समीकरण समाधानों को ढूँढने के लिए, x=0 और -18x+18=0 को हल करें.
-18x^{2}+18x=0
x-1 से -18x गुणा करने हेतु बंटन के गुण का उपयोग करें.
x=\frac{-18±\sqrt{18^{2}}}{2\left(-18\right)}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न -18, b के लिए 18 और द्विघात सूत्र में c के लिए 0, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±18}{2\left(-18\right)}
18^{2} का वर्गमूल लें.
x=\frac{-18±18}{-36}
2 को -18 बार गुणा करें.
x=\frac{0}{-36}
± के धन में होने पर अब समीकरण x=\frac{-18±18}{-36} को हल करें. -18 में 18 को जोड़ें.
x=0
-36 को 0 से विभाजित करें.
x=-\frac{36}{-36}
± के ऋण में होने पर अब समीकरण x=\frac{-18±18}{-36} को हल करें. -18 में से 18 को घटाएं.
x=1
-36 को -36 से विभाजित करें.
x=0 x=1
अब समीकरण का समाधान हो गया है.
-18x^{2}+18x=0
x-1 से -18x गुणा करने हेतु बंटन के गुण का उपयोग करें.
\frac{-18x^{2}+18x}{-18}=\frac{0}{-18}
दोनों ओर -18 से विभाजन करें.
x^{2}+\frac{18}{-18}x=\frac{0}{-18}
-18 से विभाजित करना -18 से गुणा करने को पूर्ववत् करता है.
x^{2}-x=\frac{0}{-18}
-18 को 18 से विभाजित करें.
x^{2}-x=0
-18 को 0 से विभाजित करें.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} प्राप्त करने के लिए x पद के गुणांक -1 को 2 से भाग दें. फिर समीकरण के दोनों ओर -\frac{1}{2} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
भिन्न के अंश और हर दोनों का वर्गमूल करके -\frac{1}{2} का वर्ग करें.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
गुणक x^{2}-x+\frac{1}{4}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
समीकरण के दोनों ओर का वर्गमूल लें.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
सरल बनाएं.
x=1 x=0
समीकरण के दोनों ओर \frac{1}{2} जोड़ें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}