x के लिए हल करें
x=-8
x=0
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
x\left(-\frac{1}{2}x-4\right)=0
x के गुणनखंड बनाएँ.
x=0 x=-8
समीकरण समाधानों को ढूँढने के लिए, x=0 और -\frac{x}{2}-4=0 को हल करें.
-\frac{1}{2}x^{2}-4x=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\left(-\frac{1}{2}\right)}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न -\frac{1}{2}, b के लिए -4 और द्विघात सूत्र में c के लिए 0, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±4}{2\left(-\frac{1}{2}\right)}
\left(-4\right)^{2} का वर्गमूल लें.
x=\frac{4±4}{2\left(-\frac{1}{2}\right)}
-4 का विपरीत 4 है.
x=\frac{4±4}{-1}
2 को -\frac{1}{2} बार गुणा करें.
x=\frac{8}{-1}
± के धन में होने पर अब समीकरण x=\frac{4±4}{-1} को हल करें. 4 में 4 को जोड़ें.
x=-8
-1 को 8 से विभाजित करें.
x=\frac{0}{-1}
± के ऋण में होने पर अब समीकरण x=\frac{4±4}{-1} को हल करें. 4 में से 4 को घटाएं.
x=0
-1 को 0 से विभाजित करें.
x=-8 x=0
अब समीकरण का समाधान हो गया है.
-\frac{1}{2}x^{2}-4x=0
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
\frac{-\frac{1}{2}x^{2}-4x}{-\frac{1}{2}}=\frac{0}{-\frac{1}{2}}
दोनों ओर -2 से गुणा करें.
x^{2}+\left(-\frac{4}{-\frac{1}{2}}\right)x=\frac{0}{-\frac{1}{2}}
-\frac{1}{2} से विभाजित करना -\frac{1}{2} से गुणा करने को पूर्ववत् करता है.
x^{2}+8x=\frac{0}{-\frac{1}{2}}
-\frac{1}{2} के व्युत्क्रम से -4 का गुणा करके -\frac{1}{2} को -4 से विभाजित करें.
x^{2}+8x=0
-\frac{1}{2} के व्युत्क्रम से 0 का गुणा करके -\frac{1}{2} को 0 से विभाजित करें.
x^{2}+8x+4^{2}=4^{2}
4 प्राप्त करने के लिए x पद के गुणांक 8 को 2 से भाग दें. फिर समीकरण के दोनों ओर 4 का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+8x+16=16
वर्गमूल 4.
\left(x+4\right)^{2}=16
गुणक x^{2}+8x+16. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+4\right)^{2}}=\sqrt{16}
समीकरण के दोनों ओर का वर्गमूल लें.
x+4=4 x+4=-4
सरल बनाएं.
x=0 x=-8
समीकरण के दोनों ओर से 4 घटाएं.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}