x के लिए हल करें
x=\frac{\sqrt{73}-7}{2}\approx 0.772001873
x=\frac{-\sqrt{73}-7}{2}\approx -7.772001873
x=3
x=-2
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
\left(x^{2}+9x+18\right)\left(x-1\right)\left(x-2\right)=12x^{2}
x+3 को x+6 से गुणा करें और संयोजित करें जैसे पदों के लिए बंटन के गुण का उपयोग करें.
\left(x^{3}+8x^{2}+9x-18\right)\left(x-2\right)=12x^{2}
x-1 को x^{2}+9x+18 से गुणा करें और संयोजित करें जैसे पदों के लिए बंटन के गुण का उपयोग करें.
x^{4}+6x^{3}-7x^{2}-36x+36=12x^{2}
x-2 को x^{3}+8x^{2}+9x-18 से गुणा करें और संयोजित करें जैसे पदों के लिए बंटन के गुण का उपयोग करें.
x^{4}+6x^{3}-7x^{2}-36x+36-12x^{2}=0
दोनों ओर से 12x^{2} घटाएँ.
x^{4}+6x^{3}-19x^{2}-36x+36=0
-19x^{2} प्राप्त करने के लिए -7x^{2} और -12x^{2} संयोजित करें.
±36,±18,±12,±9,±6,±4,±3,±2,±1
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द 36 को विभाजित करती है और q अग्रणी गुणांक 1 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=-2
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
x^{3}+4x^{2}-27x+18=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. x^{3}+4x^{2}-27x+18 प्राप्त करने के लिए x^{4}+6x^{3}-19x^{2}-36x+36 को x+2 से विभाजित करें. समीकरण को हल करें जहाँ परिणाम 0 के बराबर हो.
±18,±9,±6,±3,±2,±1
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द 18 को विभाजित करती है और q अग्रणी गुणांक 1 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=3
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
x^{2}+7x-6=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. x^{2}+7x-6 प्राप्त करने के लिए x^{3}+4x^{2}-27x+18 को x-3 से विभाजित करें. समीकरण को हल करें जहाँ परिणाम 0 के बराबर हो.
x=\frac{-7±\sqrt{7^{2}-4\times 1\left(-6\right)}}{2}
प्रपत्र ax^{2}+bx+c=0 के सभी समीकरणों को \frac{-b±\sqrt{b^{2}-4ac}}{2a} द्विघात सूत्र का उपयोग करके हल किया जा सकता है. द्विघात सूत्र में a के लिए 1, b के लिए 7, और c के लिए -6 प्रतिस्थापित करें.
x=\frac{-7±\sqrt{73}}{2}
परिकलन करें.
x=\frac{-\sqrt{73}-7}{2} x=\frac{\sqrt{73}-7}{2}
समीकरण x^{2}+7x-6=0 को हल करें जब ± धन है और जब ± ऋण है.
x=-2 x=3 x=\frac{-\sqrt{73}-7}{2} x=\frac{\sqrt{73}-7}{2}
सभी मिले हुए समाधानों की सूची.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}