मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

2x^{2}-x-3=3
x+1 को 2x-3 से गुणा करें और संयोजित करें जैसे पदों के लिए बंटन के गुण का उपयोग करें.
2x^{2}-x-3-3=0
दोनों ओर से 3 घटाएँ.
2x^{2}-x-6=0
-6 प्राप्त करने के लिए 3 में से -3 घटाएं.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 2, b के लिए -1 और द्विघात सूत्र में c के लिए -6, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
-4 को 2 बार गुणा करें.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
-8 को -6 बार गुणा करें.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
1 में 48 को जोड़ें.
x=\frac{-\left(-1\right)±7}{2\times 2}
49 का वर्गमूल लें.
x=\frac{1±7}{2\times 2}
-1 का विपरीत 1 है.
x=\frac{1±7}{4}
2 को 2 बार गुणा करें.
x=\frac{8}{4}
± के धन में होने पर अब समीकरण x=\frac{1±7}{4} को हल करें. 1 में 7 को जोड़ें.
x=2
4 को 8 से विभाजित करें.
x=-\frac{6}{4}
± के ऋण में होने पर अब समीकरण x=\frac{1±7}{4} को हल करें. 1 में से 7 को घटाएं.
x=-\frac{3}{2}
2 को निकालकर और रद्द करके भिन्न \frac{-6}{4} को न्यूनतम पदों तक कम करें.
x=2 x=-\frac{3}{2}
अब समीकरण का समाधान हो गया है.
2x^{2}-x-3=3
x+1 को 2x-3 से गुणा करें और संयोजित करें जैसे पदों के लिए बंटन के गुण का उपयोग करें.
2x^{2}-x=3+3
दोनों ओर 3 जोड़ें.
2x^{2}-x=6
6 को प्राप्त करने के लिए 3 और 3 को जोड़ें.
\frac{2x^{2}-x}{2}=\frac{6}{2}
दोनों ओर 2 से विभाजन करें.
x^{2}-\frac{1}{2}x=\frac{6}{2}
2 से विभाजित करना 2 से गुणा करने को पूर्ववत् करता है.
x^{2}-\frac{1}{2}x=3
2 को 6 से विभाजित करें.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=3+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} प्राप्त करने के लिए x पद के गुणांक -\frac{1}{2} को 2 से भाग दें. फिर समीकरण के दोनों ओर -\frac{1}{4} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}-\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
भिन्न के अंश और हर दोनों का वर्गमूल करके -\frac{1}{4} का वर्ग करें.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
3 में \frac{1}{16} को जोड़ें.
\left(x-\frac{1}{4}\right)^{2}=\frac{49}{16}
गुणक x^{2}-\frac{1}{2}x+\frac{1}{16}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
समीकरण के दोनों ओर का वर्गमूल लें.
x-\frac{1}{4}=\frac{7}{4} x-\frac{1}{4}=-\frac{7}{4}
सरल बनाएं.
x=2 x=-\frac{3}{2}
समीकरण के दोनों ओर \frac{1}{4} जोड़ें.