मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

x^{2}-10x+25=1
\left(x-5\right)^{2} को विस्तृत करने के लिए द्विपद प्रमेय \left(a-b\right)^{2}=a^{2}-2ab+b^{2} का उपयोग करें.
x^{2}-10x+25-1=0
दोनों ओर से 1 घटाएँ.
x^{2}-10x+24=0
24 प्राप्त करने के लिए 1 में से 25 घटाएं.
a+b=-10 ab=24
समीकरण को हल करने के लिए, सूत्र x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) का उपयोग करके x^{2}-10x+24 फ़ैक्टर. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,-24 -2,-12 -3,-8 -4,-6
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूँकि a+b नकारात्मक है, a और b दोनों नकारात्मक हैं. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद 24 देते हैं.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-6 b=-4
हल वह जोड़ी है जो -10 योग देती है.
\left(x-6\right)\left(x-4\right)
प्राप्त किए गए मानों का उपयोग कर \left(x+a\right)\left(x+b\right) फ़ैक्टरी व्यंजक को फिर से लिखें.
x=6 x=4
समीकरण समाधानों को ढूँढने के लिए, x-6=0 और x-4=0 को हल करें.
x^{2}-10x+25=1
\left(x-5\right)^{2} को विस्तृत करने के लिए द्विपद प्रमेय \left(a-b\right)^{2}=a^{2}-2ab+b^{2} का उपयोग करें.
x^{2}-10x+25-1=0
दोनों ओर से 1 घटाएँ.
x^{2}-10x+24=0
24 प्राप्त करने के लिए 1 में से 25 घटाएं.
a+b=-10 ab=1\times 24=24
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर x^{2}+ax+bx+24 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,-24 -2,-12 -3,-8 -4,-6
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूँकि a+b नकारात्मक है, a और b दोनों नकारात्मक हैं. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद 24 देते हैं.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-6 b=-4
हल वह जोड़ी है जो -10 योग देती है.
\left(x^{2}-6x\right)+\left(-4x+24\right)
x^{2}-10x+24 को \left(x^{2}-6x\right)+\left(-4x+24\right) के रूप में फिर से लिखें.
x\left(x-6\right)-4\left(x-6\right)
पहले समूह में x के और दूसरे समूह में -4 को गुणनखंड बनाएँ.
\left(x-6\right)\left(x-4\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-6 के गुणनखंड बनाएँ.
x=6 x=4
समीकरण समाधानों को ढूँढने के लिए, x-6=0 और x-4=0 को हल करें.
x^{2}-10x+25=1
\left(x-5\right)^{2} को विस्तृत करने के लिए द्विपद प्रमेय \left(a-b\right)^{2}=a^{2}-2ab+b^{2} का उपयोग करें.
x^{2}-10x+25-1=0
दोनों ओर से 1 घटाएँ.
x^{2}-10x+24=0
24 प्राप्त करने के लिए 1 में से 25 घटाएं.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 24}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए -10 और द्विघात सूत्र में c के लिए 24, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 24}}{2}
वर्गमूल -10.
x=\frac{-\left(-10\right)±\sqrt{100-96}}{2}
-4 को 24 बार गुणा करें.
x=\frac{-\left(-10\right)±\sqrt{4}}{2}
100 में -96 को जोड़ें.
x=\frac{-\left(-10\right)±2}{2}
4 का वर्गमूल लें.
x=\frac{10±2}{2}
-10 का विपरीत 10 है.
x=\frac{12}{2}
± के धन में होने पर अब समीकरण x=\frac{10±2}{2} को हल करें. 10 में 2 को जोड़ें.
x=6
2 को 12 से विभाजित करें.
x=\frac{8}{2}
± के ऋण में होने पर अब समीकरण x=\frac{10±2}{2} को हल करें. 10 में से 2 को घटाएं.
x=4
2 को 8 से विभाजित करें.
x=6 x=4
अब समीकरण का समाधान हो गया है.
\sqrt{\left(x-5\right)^{2}}=\sqrt{1}
समीकरण के दोनों ओर का वर्गमूल लें.
x-5=1 x-5=-1
सरल बनाएं.
x=6 x=4
समीकरण के दोनों ओर 5 जोड़ें.