मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

x^{2}-6x+9=121
\left(x-3\right)^{2} को विस्तृत करने के लिए द्विपद प्रमेय \left(a-b\right)^{2}=a^{2}-2ab+b^{2} का उपयोग करें.
x^{2}-6x+9-121=0
दोनों ओर से 121 घटाएँ.
x^{2}-6x-112=0
-112 प्राप्त करने के लिए 121 में से 9 घटाएं.
a+b=-6 ab=-112
समीकरण को हल करने के लिए, सूत्र x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) का उपयोग करके x^{2}-6x-112 फ़ैक्टर. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,-112 2,-56 4,-28 7,-16 8,-14
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b ऋणात्मक है, इसलिए ऋणात्मक संख्या में धनात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -112 देते हैं.
1-112=-111 2-56=-54 4-28=-24 7-16=-9 8-14=-6
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-14 b=8
हल वह जोड़ी है जो -6 योग देती है.
\left(x-14\right)\left(x+8\right)
प्राप्त किए गए मानों का उपयोग कर \left(x+a\right)\left(x+b\right) फ़ैक्टरी व्यंजक को फिर से लिखें.
x=14 x=-8
समीकरण समाधानों को ढूँढने के लिए, x-14=0 और x+8=0 को हल करें.
x^{2}-6x+9=121
\left(x-3\right)^{2} को विस्तृत करने के लिए द्विपद प्रमेय \left(a-b\right)^{2}=a^{2}-2ab+b^{2} का उपयोग करें.
x^{2}-6x+9-121=0
दोनों ओर से 121 घटाएँ.
x^{2}-6x-112=0
-112 प्राप्त करने के लिए 121 में से 9 घटाएं.
a+b=-6 ab=1\left(-112\right)=-112
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर x^{2}+ax+bx-112 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,-112 2,-56 4,-28 7,-16 8,-14
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b ऋणात्मक है, इसलिए ऋणात्मक संख्या में धनात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -112 देते हैं.
1-112=-111 2-56=-54 4-28=-24 7-16=-9 8-14=-6
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-14 b=8
हल वह जोड़ी है जो -6 योग देती है.
\left(x^{2}-14x\right)+\left(8x-112\right)
x^{2}-6x-112 को \left(x^{2}-14x\right)+\left(8x-112\right) के रूप में फिर से लिखें.
x\left(x-14\right)+8\left(x-14\right)
पहले समूह में x के और दूसरे समूह में 8 को गुणनखंड बनाएँ.
\left(x-14\right)\left(x+8\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-14 के गुणनखंड बनाएँ.
x=14 x=-8
समीकरण समाधानों को ढूँढने के लिए, x-14=0 और x+8=0 को हल करें.
x^{2}-6x+9=121
\left(x-3\right)^{2} को विस्तृत करने के लिए द्विपद प्रमेय \left(a-b\right)^{2}=a^{2}-2ab+b^{2} का उपयोग करें.
x^{2}-6x+9-121=0
दोनों ओर से 121 घटाएँ.
x^{2}-6x-112=0
-112 प्राप्त करने के लिए 121 में से 9 घटाएं.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-112\right)}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए -6 और द्विघात सूत्र में c के लिए -112, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-112\right)}}{2}
वर्गमूल -6.
x=\frac{-\left(-6\right)±\sqrt{36+448}}{2}
-4 को -112 बार गुणा करें.
x=\frac{-\left(-6\right)±\sqrt{484}}{2}
36 में 448 को जोड़ें.
x=\frac{-\left(-6\right)±22}{2}
484 का वर्गमूल लें.
x=\frac{6±22}{2}
-6 का विपरीत 6 है.
x=\frac{28}{2}
± के धन में होने पर अब समीकरण x=\frac{6±22}{2} को हल करें. 6 में 22 को जोड़ें.
x=14
2 को 28 से विभाजित करें.
x=-\frac{16}{2}
± के ऋण में होने पर अब समीकरण x=\frac{6±22}{2} को हल करें. 6 में से 22 को घटाएं.
x=-8
2 को -16 से विभाजित करें.
x=14 x=-8
अब समीकरण का समाधान हो गया है.
\sqrt{\left(x-3\right)^{2}}=\sqrt{121}
समीकरण के दोनों ओर का वर्गमूल लें.
x-3=11 x-3=-11
सरल बनाएं.
x=14 x=-8
समीकरण के दोनों ओर 3 जोड़ें.