मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

a+b=12 ab=1\times 36=36
समूहीकरण द्वारा व्यंजक को फ़ैक्टर करें. सबसे पहले, व्यंजक को x^{2}+ax+bx+36 के रूप में फिर से लिखा जाना आवश्यक है. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,36 2,18 3,12 4,9 6,6
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूंकि a+b सकारात्मक है, a और b दोनों सकारात्मक हैं. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद 36 देते हैं.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=6 b=6
हल वह जोड़ी है जो 12 योग देती है.
\left(x^{2}+6x\right)+\left(6x+36\right)
x^{2}+12x+36 को \left(x^{2}+6x\right)+\left(6x+36\right) के रूप में फिर से लिखें.
x\left(x+6\right)+6\left(x+6\right)
पहले समूह में x के और दूसरे समूह में 6 को गुणनखंड बनाएँ.
\left(x+6\right)\left(x+6\right)
विभाजन के गुण का उपयोग करके सामान्य पद x+6 के गुणनखंड बनाएँ.
\left(x+6\right)^{2}
द्विपद वर्ग के रूप में फिर से लिखें.
factor(x^{2}+12x+36)
इस त्रिपद में त्रिपद वर्ग का रूप है, जो कॉमन फ़ैक्टर से गुणित हो सकता है. त्रिपद वर्गों को अगली या पिछली टर्म के वर्गमूलों को ढूंढकर भाजित किया जा सकता है.
\sqrt{36}=6
पिछले पद का वर्गमूल खोजें, 36.
\left(x+6\right)^{2}
त्रिपद वर्ग, द्विपद का वर्ग है जो कि अगली और पिछली टर्म के वर्गमूलों का योग या अंतर है, जिसमें त्रिपद वर्ग की मध्य टर्म के चिह्न द्वारा चिह्न को निर्धारित किया जाता है.
x^{2}+12x+36=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-12±\sqrt{144-4\times 36}}{2}
वर्गमूल 12.
x=\frac{-12±\sqrt{144-144}}{2}
-4 को 36 बार गुणा करें.
x=\frac{-12±\sqrt{0}}{2}
144 में -144 को जोड़ें.
x=\frac{-12±0}{2}
0 का वर्गमूल लें.
x^{2}+12x+36=\left(x-\left(-6\right)\right)\left(x-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए -6 और x_{2} के लिए -6 स्थानापन्न है.
x^{2}+12x+36=\left(x+6\right)\left(x+6\right)
प्रपत्र के सभी व्यंजकों को p-\left(-q\right) से p+q तक सरलीकृत करें.