x के लिए हल करें (जटिल समाधान)
\left\{\begin{matrix}x=-\frac{t^{2}-3}{3\left(t-2\right)}\text{, }&t\neq 2\\x\in \mathrm{C}\text{, }&t=0\end{matrix}\right.
x के लिए हल करें
\left\{\begin{matrix}x=-\frac{t^{2}-3}{3\left(t-2\right)}\text{, }&t\neq 2\\x\in \mathrm{R}\text{, }&t=0\end{matrix}\right.
t के लिए हल करें (जटिल समाधान)
t=\frac{-\sqrt{9x^{2}+24x+12}-3x}{2}
t=0
t=\frac{\sqrt{9x^{2}+24x+12}-3x}{2}
t के लिए हल करें
\left\{\begin{matrix}\\t=0\text{, }&\text{unconditionally}\\t=\frac{\sqrt{9x^{2}+24x+12}-3x}{2}\text{; }t=\frac{-\sqrt{9x^{2}+24x+12}-3x}{2}\text{, }&x\geq -\frac{2}{3}\text{ or }x\leq -2\end{matrix}\right.
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
x^{3}+3x^{2}t+3xt^{2}+t^{3}-x^{3}=3t\left(x+1\right)^{2}
\left(x+t\right)^{3} को विस्तृत करने के लिए द्विपद प्रमेय \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} का उपयोग करें.
3x^{2}t+3xt^{2}+t^{3}=3t\left(x+1\right)^{2}
0 प्राप्त करने के लिए x^{3} और -x^{3} संयोजित करें.
3x^{2}t+3xt^{2}+t^{3}=3t\left(x^{2}+2x+1\right)
\left(x+1\right)^{2} को विस्तृत करने के लिए द्विपद प्रमेय \left(a+b\right)^{2}=a^{2}+2ab+b^{2} का उपयोग करें.
3x^{2}t+3xt^{2}+t^{3}=3tx^{2}+6tx+3t
x^{2}+2x+1 से 3t गुणा करने हेतु बंटन के गुण का उपयोग करें.
3x^{2}t+3xt^{2}+t^{3}-3tx^{2}=6tx+3t
दोनों ओर से 3tx^{2} घटाएँ.
3xt^{2}+t^{3}=6tx+3t
0 प्राप्त करने के लिए 3x^{2}t और -3tx^{2} संयोजित करें.
3xt^{2}+t^{3}-6tx=3t
दोनों ओर से 6tx घटाएँ.
3xt^{2}-6tx=3t-t^{3}
दोनों ओर से t^{3} घटाएँ.
\left(3t^{2}-6t\right)x=3t-t^{3}
x को शामिल करने वाले सभी पदों को संयोजित करें.
\frac{\left(3t^{2}-6t\right)x}{3t^{2}-6t}=\frac{t\left(3-t^{2}\right)}{3t^{2}-6t}
दोनों ओर 3t^{2}-6t से विभाजन करें.
x=\frac{t\left(3-t^{2}\right)}{3t^{2}-6t}
3t^{2}-6t से विभाजित करना 3t^{2}-6t से गुणा करने को पूर्ववत् करता है.
x=\frac{3-t^{2}}{3\left(t-2\right)}
3t^{2}-6t को t\left(3-t^{2}\right) से विभाजित करें.
x^{3}+3x^{2}t+3xt^{2}+t^{3}-x^{3}=3t\left(x+1\right)^{2}
\left(x+t\right)^{3} को विस्तृत करने के लिए द्विपद प्रमेय \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} का उपयोग करें.
3x^{2}t+3xt^{2}+t^{3}=3t\left(x+1\right)^{2}
0 प्राप्त करने के लिए x^{3} और -x^{3} संयोजित करें.
3x^{2}t+3xt^{2}+t^{3}=3t\left(x^{2}+2x+1\right)
\left(x+1\right)^{2} को विस्तृत करने के लिए द्विपद प्रमेय \left(a+b\right)^{2}=a^{2}+2ab+b^{2} का उपयोग करें.
3x^{2}t+3xt^{2}+t^{3}=3tx^{2}+6tx+3t
x^{2}+2x+1 से 3t गुणा करने हेतु बंटन के गुण का उपयोग करें.
3x^{2}t+3xt^{2}+t^{3}-3tx^{2}=6tx+3t
दोनों ओर से 3tx^{2} घटाएँ.
3xt^{2}+t^{3}=6tx+3t
0 प्राप्त करने के लिए 3x^{2}t और -3tx^{2} संयोजित करें.
3xt^{2}+t^{3}-6tx=3t
दोनों ओर से 6tx घटाएँ.
3xt^{2}-6tx=3t-t^{3}
दोनों ओर से t^{3} घटाएँ.
\left(3t^{2}-6t\right)x=3t-t^{3}
x को शामिल करने वाले सभी पदों को संयोजित करें.
\frac{\left(3t^{2}-6t\right)x}{3t^{2}-6t}=\frac{t\left(3-t^{2}\right)}{3t^{2}-6t}
दोनों ओर 3t^{2}-6t से विभाजन करें.
x=\frac{t\left(3-t^{2}\right)}{3t^{2}-6t}
3t^{2}-6t से विभाजित करना 3t^{2}-6t से गुणा करने को पूर्ववत् करता है.
x=\frac{3-t^{2}}{3\left(t-2\right)}
3t^{2}-6t को t\left(3-t^{2}\right) से विभाजित करें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}