x के लिए हल करें
x = \frac{\sqrt{33} + 3}{2} \approx 4.372281323
x=\frac{3-\sqrt{33}}{2}\approx -1.372281323
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
x^{2}-4=3x+2
\left(x+2\right)\left(x-2\right) पर विचार करें. इस नियम का उपयोग करके गुणन को वर्गों के अंतर में रूपांतरित किया जा सकता है: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. वर्गमूल 2.
x^{2}-4-3x=2
दोनों ओर से 3x घटाएँ.
x^{2}-4-3x-2=0
दोनों ओर से 2 घटाएँ.
x^{2}-6-3x=0
-6 प्राप्त करने के लिए 2 में से -4 घटाएं.
x^{2}-3x-6=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-6\right)}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए -3 और द्विघात सूत्र में c के लिए -6, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-6\right)}}{2}
वर्गमूल -3.
x=\frac{-\left(-3\right)±\sqrt{9+24}}{2}
-4 को -6 बार गुणा करें.
x=\frac{-\left(-3\right)±\sqrt{33}}{2}
9 में 24 को जोड़ें.
x=\frac{3±\sqrt{33}}{2}
-3 का विपरीत 3 है.
x=\frac{\sqrt{33}+3}{2}
± के धन में होने पर अब समीकरण x=\frac{3±\sqrt{33}}{2} को हल करें. 3 में \sqrt{33} को जोड़ें.
x=\frac{3-\sqrt{33}}{2}
± के ऋण में होने पर अब समीकरण x=\frac{3±\sqrt{33}}{2} को हल करें. 3 में से \sqrt{33} को घटाएं.
x=\frac{\sqrt{33}+3}{2} x=\frac{3-\sqrt{33}}{2}
अब समीकरण का समाधान हो गया है.
x^{2}-4=3x+2
\left(x+2\right)\left(x-2\right) पर विचार करें. इस नियम का उपयोग करके गुणन को वर्गों के अंतर में रूपांतरित किया जा सकता है: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. वर्गमूल 2.
x^{2}-4-3x=2
दोनों ओर से 3x घटाएँ.
x^{2}-3x=2+4
दोनों ओर 4 जोड़ें.
x^{2}-3x=6
6 को प्राप्त करने के लिए 2 और 4 को जोड़ें.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=6+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} प्राप्त करने के लिए x पद के गुणांक -3 को 2 से भाग दें. फिर समीकरण के दोनों ओर -\frac{3}{2} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}-3x+\frac{9}{4}=6+\frac{9}{4}
भिन्न के अंश और हर दोनों का वर्गमूल करके -\frac{3}{2} का वर्ग करें.
x^{2}-3x+\frac{9}{4}=\frac{33}{4}
6 में \frac{9}{4} को जोड़ें.
\left(x-\frac{3}{2}\right)^{2}=\frac{33}{4}
गुणक x^{2}-3x+\frac{9}{4}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
समीकरण के दोनों ओर का वर्गमूल लें.
x-\frac{3}{2}=\frac{\sqrt{33}}{2} x-\frac{3}{2}=-\frac{\sqrt{33}}{2}
सरल बनाएं.
x=\frac{\sqrt{33}+3}{2} x=\frac{3-\sqrt{33}}{2}
समीकरण के दोनों ओर \frac{3}{2} जोड़ें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}