P के लिए हल करें
P=2A^{2}
A\neq 0
A के लिए हल करें
A=\frac{\sqrt{2P}}{2}
A=-\frac{\sqrt{2P}}{2}\text{, }P>0
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
2AA=P
चर P, 0 के बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों ओर 2P से गुणा करें, जो कि P,2 का लघुत्तम समापवर्तक है.
2A^{2}=P
A^{2} प्राप्त करने के लिए A और A का गुणा करें.
P=2A^{2}
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
P=2A^{2}\text{, }P\neq 0
चर P, 0 के बराबर नहीं हो सकता.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}