x के लिए हल करें
x=7
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
चर x, -3,-1 मानों में से किसी के भी बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों ओर 4\left(x+1\right)\left(x+3\right) से गुणा करें, जो कि x+3,4\left(x^{2}+4x+3\right) का लघुत्तम समापवर्तक है.
\left(x^{2}+4x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
x+3 को x+1 से गुणा करें और संयोजित करें जैसे पदों के लिए बंटन के गुण का उपयोग करें.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
x-2 को x^{2}+4x+3 से गुणा करें और संयोजित करें जैसे पदों के लिए बंटन के गुण का उपयोग करें.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
फ़ैक्टर x^{2}-x-2.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. 3 को \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} बार गुणा करें.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
चूँकि \frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} और \frac{7x-5}{\left(x-2\right)\left(x+1\right)} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+3x-6x-6+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
3\left(x-2\right)\left(x+1\right)+7x-5 का गुणन करें.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
3x^{2}+3x-6x-6+7x-5 में इस तरह के पद संयोजित करें.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. \left(x-2\right)\left(x+1\right) और x+1 का लघुत्तम समापवर्त्य \left(x-2\right)\left(x+1\right) है. \frac{3x}{x+1} को \frac{x-2}{x-2} बार गुणा करें.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
चूँकि \frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)} और \frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} का एक ही भाजक है, इसलिए उनके भाजकों को घटाकर उन्हें घटाएँ.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x^{2}+6x}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
3x^{2}+4x-11-3x\left(x-2\right) का गुणन करें.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
3x^{2}+4x-11-3x^{2}+6x में इस तरह के पद संयोजित करें.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)} को एकल भिन्न के रूप में व्यक्त करें.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+20x+20=9x^{2}+43x+8
5 से 4x+4 गुणा करने हेतु बंटन के गुण का उपयोग करें.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. 20x+20 को \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} बार गुणा करें.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
चूँकि \frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)} और \frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right) का गुणन करें.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40 में इस तरह के पद संयोजित करें.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}=9x^{2}+43x+8
x+1 को x-2 से गुणा करें और संयोजित करें जैसे पदों के लिए बंटन के गुण का उपयोग करें.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}-9x^{2}=43x+8
दोनों ओर से 9x^{2} घटाएँ.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-9x^{2}=43x+8
फ़ैक्टर x^{2}-x-2.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. -9x^{2} को \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} बार गुणा करें.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
चूँकि \frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} और \frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2}}{\left(x-2\right)\left(x+1\right)}=43x+8
10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right) का गुणन करें.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=43x+8
10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2} में इस तरह के पद संयोजित करें.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
दोनों ओर से 43x घटाएँ.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{x^{2}-x-2}-43x=8
x+1 को x-2 से गुणा करें और संयोजित करें जैसे पदों के लिए बंटन के गुण का उपयोग करें.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
फ़ैक्टर x^{2}-x-2.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. -43x को \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} बार गुणा करें.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
चूँकि \frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} और \frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x}{\left(x-2\right)\left(x+1\right)}=8
x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right) का गुणन करें.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}=8
x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x में इस तरह के पद संयोजित करें.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
दोनों ओर से 8 घटाएँ.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{x^{2}-x-2}-8=0
x+1 को x-2 से गुणा करें और संयोजित करें जैसे पदों के लिए बंटन के गुण का उपयोग करें.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
फ़ैक्टर x^{2}-x-2.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-\frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. 8 को \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} बार गुणा करें.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
चूँकि \frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)} और \frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} का एक ही भाजक है, इसलिए उनके भाजकों को घटाकर उन्हें घटाएँ.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16}{\left(x-2\right)\left(x+1\right)}=0
x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right) का गुणन करें.
\frac{x^{4}-5x^{3}-19x^{2}+29x+42}{\left(x-2\right)\left(x+1\right)}=0
x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16 में इस तरह के पद संयोजित करें.
x^{4}-5x^{3}-19x^{2}+29x+42=0
चर x, -1,2 मानों में से किसी के भी बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों को \left(x-2\right)\left(x+1\right) से गुणा करें.
±42,±21,±14,±7,±6,±3,±2,±1
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द 42 को विभाजित करती है और q अग्रणी गुणांक 1 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=-1
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
x^{3}-6x^{2}-13x+42=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. x^{3}-6x^{2}-13x+42 प्राप्त करने के लिए x^{4}-5x^{3}-19x^{2}+29x+42 को x+1 से विभाजित करें. समीकरण को हल करें जहाँ परिणाम 0 के बराबर हो.
±42,±21,±14,±7,±6,±3,±2,±1
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द 42 को विभाजित करती है और q अग्रणी गुणांक 1 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=2
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
x^{2}-4x-21=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. x^{2}-4x-21 प्राप्त करने के लिए x^{3}-6x^{2}-13x+42 को x-2 से विभाजित करें. समीकरण को हल करें जहाँ परिणाम 0 के बराबर हो.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-21\right)}}{2}
प्रपत्र ax^{2}+bx+c=0 के सभी समीकरणों को \frac{-b±\sqrt{b^{2}-4ac}}{2a} द्विघात सूत्र का उपयोग करके हल किया जा सकता है. द्विघात सूत्र में a के लिए 1, b के लिए -4, और c के लिए -21 प्रतिस्थापित करें.
x=\frac{4±10}{2}
परिकलन करें.
x=-3 x=7
समीकरण x^{2}-4x-21=0 को हल करें जब ± धन है और जब ± ऋण है.
x=7
वह मान निकालें जिसके चर बराबर नहीं हो सकते.
x=-1 x=2 x=-3 x=7
सभी मिले हुए समाधानों की सूची.
x=7
चर x, -1,2,-3 मानों में से किसी के भी बराबर नहीं हो सकता.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}