मूल्यांकन करें
2ab^{2}
w.r.t. a घटाएँ
2b^{2}
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
\frac{\left(-\frac{12}{7}\right)^{1}a^{4}b^{4}}{\left(-\frac{6}{7}\right)^{1}a^{3}b^{2}}
अभिव्यक्ति को सरल करने के लिए घातांक नियमों का उपयोग करें.
\frac{\left(-\frac{12}{7}\right)^{1}}{\left(-\frac{6}{7}\right)^{1}}a^{4-3}b^{4-2}
समान आधार की घातों को विभाजित करने के लिए, हर के घातांक को अंश के घातांक से घटाएं.
\frac{\left(-\frac{12}{7}\right)^{1}}{\left(-\frac{6}{7}\right)^{1}}a^{1}b^{4-2}
4 में से 3 को घटाएं.
\frac{\left(-\frac{12}{7}\right)^{1}}{\left(-\frac{6}{7}\right)^{1}}ab^{2}
4 में से 2 को घटाएं.
2ab^{2}
-\frac{6}{7} के व्युत्क्रम से -\frac{12}{7} का गुणा करके -\frac{6}{7} को -\frac{12}{7} से विभाजित करें.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{\frac{12b^{4}}{7}}{-\frac{6b^{2}}{7}}\right)a^{4-3})
समान आधार की घातों को विभाजित करने के लिए, हर के घातांक को अंश के घातांक से घटाएं.
\frac{\mathrm{d}}{\mathrm{d}a}(2b^{2}a^{1})
अंकगणित करें.
2b^{2}a^{1-1}
किसी बहुपद का व्युत्पन्न उनके पदों के व्युत्पन्नों का योग है. किसी स्थायी पद का व्युत्पन्न 0 होता है. ax^{n} का व्युत्पन्न nax^{n-1} है.
2b^{2}a^{0}
अंकगणित करें.
2b^{2}\times 1
0, t^{0}=1 को छोड़कर किसी भी t पद के लिए.
2b^{2}
किसी भी पद t, t\times 1=t और 1t=t के लिए.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}