मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

±12,±6,±4,±3,±2,±1
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द 12 को विभाजित करती है और q अग्रणी गुणांक 1 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=6
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
x^{2}-2=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. x^{2}-2 प्राप्त करने के लिए x^{3}-6x^{2}-2x+12 को x-6 से विभाजित करें. समीकरण को हल करें जहाँ परिणाम 0 के बराबर हो.
x=\frac{0±\sqrt{0^{2}-4\times 1\left(-2\right)}}{2}
प्रपत्र ax^{2}+bx+c=0 के सभी समीकरणों को \frac{-b±\sqrt{b^{2}-4ac}}{2a} द्विघात सूत्र का उपयोग करके हल किया जा सकता है. द्विघात सूत्र में a के लिए 1, b के लिए 0, और c के लिए -2 प्रतिस्थापित करें.
x=\frac{0±2\sqrt{2}}{2}
परिकलन करें.
x=-\sqrt{2} x=\sqrt{2}
समीकरण x^{2}-2=0 को हल करें जब ± धन है और जब ± ऋण है.
x=6 x=-\sqrt{2} x=\sqrt{2}
सभी मिले हुए समाधानों की सूची.