मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

a+b=-6 ab=8
समीकरण को हल करने के लिए, सूत्र x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) का उपयोग करके x^{2}-6x+8 फ़ैक्टर. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,-8 -2,-4
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूँकि a+b नकारात्मक है, a और b दोनों नकारात्मक हैं. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद 8 देते हैं.
-1-8=-9 -2-4=-6
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-4 b=-2
हल वह जोड़ी है जो -6 योग देती है.
\left(x-4\right)\left(x-2\right)
प्राप्त किए गए मानों का उपयोग कर \left(x+a\right)\left(x+b\right) फ़ैक्टरी व्यंजक को फिर से लिखें.
x=4 x=2
समीकरण समाधानों को ढूँढने के लिए, x-4=0 और x-2=0 को हल करें.
a+b=-6 ab=1\times 8=8
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर x^{2}+ax+bx+8 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,-8 -2,-4
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूँकि a+b नकारात्मक है, a और b दोनों नकारात्मक हैं. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद 8 देते हैं.
-1-8=-9 -2-4=-6
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-4 b=-2
हल वह जोड़ी है जो -6 योग देती है.
\left(x^{2}-4x\right)+\left(-2x+8\right)
x^{2}-6x+8 को \left(x^{2}-4x\right)+\left(-2x+8\right) के रूप में फिर से लिखें.
x\left(x-4\right)-2\left(x-4\right)
पहले समूह में x के और दूसरे समूह में -2 को गुणनखंड बनाएँ.
\left(x-4\right)\left(x-2\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-4 के गुणनखंड बनाएँ.
x=4 x=2
समीकरण समाधानों को ढूँढने के लिए, x-4=0 और x-2=0 को हल करें.
x^{2}-6x+8=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए -6 और द्विघात सूत्र में c के लिए 8, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8}}{2}
वर्गमूल -6.
x=\frac{-\left(-6\right)±\sqrt{36-32}}{2}
-4 को 8 बार गुणा करें.
x=\frac{-\left(-6\right)±\sqrt{4}}{2}
36 में -32 को जोड़ें.
x=\frac{-\left(-6\right)±2}{2}
4 का वर्गमूल लें.
x=\frac{6±2}{2}
-6 का विपरीत 6 है.
x=\frac{8}{2}
± के धन में होने पर अब समीकरण x=\frac{6±2}{2} को हल करें. 6 में 2 को जोड़ें.
x=4
2 को 8 से विभाजित करें.
x=\frac{4}{2}
± के ऋण में होने पर अब समीकरण x=\frac{6±2}{2} को हल करें. 6 में से 2 को घटाएं.
x=2
2 को 4 से विभाजित करें.
x=4 x=2
अब समीकरण का समाधान हो गया है.
x^{2}-6x+8=0
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
x^{2}-6x+8-8=-8
समीकरण के दोनों ओर से 8 घटाएं.
x^{2}-6x=-8
8 को इसी से घटाने से 0 मिलता है.
x^{2}-6x+\left(-3\right)^{2}=-8+\left(-3\right)^{2}
-3 प्राप्त करने के लिए x पद के गुणांक -6 को 2 से भाग दें. फिर समीकरण के दोनों ओर -3 का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}-6x+9=-8+9
वर्गमूल -3.
x^{2}-6x+9=1
-8 में 9 को जोड़ें.
\left(x-3\right)^{2}=1
गुणक x^{2}-6x+9. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x-3\right)^{2}}=\sqrt{1}
समीकरण के दोनों ओर का वर्गमूल लें.
x-3=1 x-3=-1
सरल बनाएं.
x=4 x=2
समीकरण के दोनों ओर 3 जोड़ें.