मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

a+b=-11 ab=1\left(-26\right)=-26
समूहीकरण द्वारा व्यंजक को फ़ैक्टर करें. सबसे पहले, व्यंजक को x^{2}+ax+bx-26 के रूप में फिर से लिखा जाना आवश्यक है. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,-26 2,-13
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b ऋणात्मक है, इसलिए ऋणात्मक संख्या में धनात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -26 देते हैं.
1-26=-25 2-13=-11
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-13 b=2
हल वह जोड़ी है जो -11 योग देती है.
\left(x^{2}-13x\right)+\left(2x-26\right)
x^{2}-11x-26 को \left(x^{2}-13x\right)+\left(2x-26\right) के रूप में फिर से लिखें.
x\left(x-13\right)+2\left(x-13\right)
पहले समूह में x के और दूसरे समूह में 2 को गुणनखंड बनाएँ.
\left(x-13\right)\left(x+2\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-13 के गुणनखंड बनाएँ.
x^{2}-11x-26=0
ट्रांसफॉर्मेशन ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके द्विघात बहुपद को भाजित किया जा सकता है, जहाँ x_{1} और x_{2} द्विघात समीकरण ax^{2}+bx+c=0 का हल है.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-26\right)}}{2}
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-26\right)}}{2}
वर्गमूल -11.
x=\frac{-\left(-11\right)±\sqrt{121+104}}{2}
-4 को -26 बार गुणा करें.
x=\frac{-\left(-11\right)±\sqrt{225}}{2}
121 में 104 को जोड़ें.
x=\frac{-\left(-11\right)±15}{2}
225 का वर्गमूल लें.
x=\frac{11±15}{2}
-11 का विपरीत 11 है.
x=\frac{26}{2}
± के धन में होने पर अब समीकरण x=\frac{11±15}{2} को हल करें. 11 में 15 को जोड़ें.
x=13
2 को 26 से विभाजित करें.
x=-\frac{4}{2}
± के ऋण में होने पर अब समीकरण x=\frac{11±15}{2} को हल करें. 11 में से 15 को घटाएं.
x=-2
2 को -4 से विभाजित करें.
x^{2}-11x-26=\left(x-13\right)\left(x-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) का उपयोग करके मूल व्यंजक के फ़ैक्टर करें. x_{1} के लिए 13 और x_{2} के लिए -2 स्थानापन्न है.
x^{2}-11x-26=\left(x-13\right)\left(x+2\right)
प्रपत्र के सभी व्यंजकों को p-\left(-q\right) से p+q तक सरलीकृत करें.