x के लिए हल करें
x=-4
x=3
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
x^{2}+x^{2}+2x+1=25
\left(x+1\right)^{2} को विस्तृत करने के लिए द्विपद प्रमेय \left(a+b\right)^{2}=a^{2}+2ab+b^{2} का उपयोग करें.
2x^{2}+2x+1=25
2x^{2} प्राप्त करने के लिए x^{2} और x^{2} संयोजित करें.
2x^{2}+2x+1-25=0
दोनों ओर से 25 घटाएँ.
2x^{2}+2x-24=0
-24 प्राप्त करने के लिए 25 में से 1 घटाएं.
x^{2}+x-12=0
दोनों ओर 2 से विभाजन करें.
a+b=1 ab=1\left(-12\right)=-12
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर x^{2}+ax+bx-12 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,12 -2,6 -3,4
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b धनात्मक है, धनात्मक संख्या में ऋणात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -12 देते हैं.
-1+12=11 -2+6=4 -3+4=1
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-3 b=4
हल वह जोड़ी है जो 1 योग देती है.
\left(x^{2}-3x\right)+\left(4x-12\right)
x^{2}+x-12 को \left(x^{2}-3x\right)+\left(4x-12\right) के रूप में फिर से लिखें.
x\left(x-3\right)+4\left(x-3\right)
पहले समूह में x के और दूसरे समूह में 4 को गुणनखंड बनाएँ.
\left(x-3\right)\left(x+4\right)
विभाजन के गुण का उपयोग करके सामान्य पद x-3 के गुणनखंड बनाएँ.
x=3 x=-4
समीकरण समाधानों को ढूँढने के लिए, x-3=0 और x+4=0 को हल करें.
x^{2}+x^{2}+2x+1=25
\left(x+1\right)^{2} को विस्तृत करने के लिए द्विपद प्रमेय \left(a+b\right)^{2}=a^{2}+2ab+b^{2} का उपयोग करें.
2x^{2}+2x+1=25
2x^{2} प्राप्त करने के लिए x^{2} और x^{2} संयोजित करें.
2x^{2}+2x+1-25=0
दोनों ओर से 25 घटाएँ.
2x^{2}+2x-24=0
-24 प्राप्त करने के लिए 25 में से 1 घटाएं.
x=\frac{-2±\sqrt{2^{2}-4\times 2\left(-24\right)}}{2\times 2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 2, b के लिए 2 और द्विघात सूत्र में c के लिए -24, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 2\left(-24\right)}}{2\times 2}
वर्गमूल 2.
x=\frac{-2±\sqrt{4-8\left(-24\right)}}{2\times 2}
-4 को 2 बार गुणा करें.
x=\frac{-2±\sqrt{4+192}}{2\times 2}
-8 को -24 बार गुणा करें.
x=\frac{-2±\sqrt{196}}{2\times 2}
4 में 192 को जोड़ें.
x=\frac{-2±14}{2\times 2}
196 का वर्गमूल लें.
x=\frac{-2±14}{4}
2 को 2 बार गुणा करें.
x=\frac{12}{4}
± के धन में होने पर अब समीकरण x=\frac{-2±14}{4} को हल करें. -2 में 14 को जोड़ें.
x=3
4 को 12 से विभाजित करें.
x=-\frac{16}{4}
± के ऋण में होने पर अब समीकरण x=\frac{-2±14}{4} को हल करें. -2 में से 14 को घटाएं.
x=-4
4 को -16 से विभाजित करें.
x=3 x=-4
अब समीकरण का समाधान हो गया है.
x^{2}+x^{2}+2x+1=25
\left(x+1\right)^{2} को विस्तृत करने के लिए द्विपद प्रमेय \left(a+b\right)^{2}=a^{2}+2ab+b^{2} का उपयोग करें.
2x^{2}+2x+1=25
2x^{2} प्राप्त करने के लिए x^{2} और x^{2} संयोजित करें.
2x^{2}+2x=25-1
दोनों ओर से 1 घटाएँ.
2x^{2}+2x=24
24 प्राप्त करने के लिए 1 में से 25 घटाएं.
\frac{2x^{2}+2x}{2}=\frac{24}{2}
दोनों ओर 2 से विभाजन करें.
x^{2}+\frac{2}{2}x=\frac{24}{2}
2 से विभाजित करना 2 से गुणा करने को पूर्ववत् करता है.
x^{2}+x=\frac{24}{2}
2 को 2 से विभाजित करें.
x^{2}+x=12
2 को 24 से विभाजित करें.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
\frac{1}{2} प्राप्त करने के लिए x पद के गुणांक 1 को 2 से भाग दें. फिर समीकरण के दोनों ओर \frac{1}{2} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+x+\frac{1}{4}=12+\frac{1}{4}
भिन्न के अंश और हर दोनों का वर्गमूल करके \frac{1}{2} का वर्ग करें.
x^{2}+x+\frac{1}{4}=\frac{49}{4}
12 में \frac{1}{4} को जोड़ें.
\left(x+\frac{1}{2}\right)^{2}=\frac{49}{4}
गुणक x^{2}+x+\frac{1}{4}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
समीकरण के दोनों ओर का वर्गमूल लें.
x+\frac{1}{2}=\frac{7}{2} x+\frac{1}{2}=-\frac{7}{2}
सरल बनाएं.
x=3 x=-4
समीकरण के दोनों ओर से \frac{1}{2} घटाएं.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}