मुख्य सामग्री पर जाएं
गुणनखंड निकालें
Tick mark Image
मूल्यांकन करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

\left(\tan(\theta )-\frac{1}{\cos(\theta )}\right)\left(\tan(\theta )+\frac{1}{\cos(\theta )}\right)
वर्गों का अंतर को इस नियम को उपयोग करके भाज्य किया जा सकता है: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{\sin(\theta )-1}{\cos(\theta )}
\tan(\theta )-\frac{1}{\cos(\theta )} पर विचार करें. \frac{1}{\cos(\theta )} के गुणनखंड बनाएँ.
\frac{\sin(\theta )+1}{\cos(\theta )}
\tan(\theta )+\frac{1}{\cos(\theta )} पर विचार करें. \frac{1}{\cos(\theta )} के गुणनखंड बनाएँ.
\left(\sin(\theta )-1\right)\left(\sin(\theta )+1\right)\times \left(\frac{1}{\cos(\theta )}\right)^{2}
पूर्ण फ़ैक्टर व्यंजक को फिर से लिखें.