x, y के लिए हल करें
x = \frac{2051}{333} = 6\frac{53}{333} \approx 6.159159159
y = \frac{16429}{333} = 49\frac{112}{333} \approx 49.336336336
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
2x+5y=259,199x-2y=1127
प्रतिस्थापन का उपयोग करके समीकरणों के युग्म को हल करने के लिए, सबसे पहले चरों में से एक के लिए समीकरणों में से किसी एक को हल करें. फिर उस चर के परिणाम को अन्य समीकरण में से प्रतिस्थापित करें.
2x+5y=259
समीकरणों में से कोई एक चुनें और इसे बराबर चिह्न के बाएँ हाथ की ओर x से पृथक् करके x से हल करें.
2x=-5y+259
समीकरण के दोनों ओर से 5y घटाएं.
x=\frac{1}{2}\left(-5y+259\right)
दोनों ओर 2 से विभाजन करें.
x=-\frac{5}{2}y+\frac{259}{2}
\frac{1}{2} को -5y+259 बार गुणा करें.
199\left(-\frac{5}{2}y+\frac{259}{2}\right)-2y=1127
अन्य समीकरण 199x-2y=1127 में \frac{-5y+259}{2} में से x को घटाएं.
-\frac{995}{2}y+\frac{51541}{2}-2y=1127
199 को \frac{-5y+259}{2} बार गुणा करें.
-\frac{999}{2}y+\frac{51541}{2}=1127
-\frac{995y}{2} में -2y को जोड़ें.
-\frac{999}{2}y=-\frac{49287}{2}
समीकरण के दोनों ओर से \frac{51541}{2} घटाएं.
y=\frac{16429}{333}
समीकरण के दोनों ओर -\frac{999}{2} से विभाजित करें, जो भिन्न के व्युत्क्रमणों का दोनों ओर गुणा करने के समान है.
x=-\frac{5}{2}\times \frac{16429}{333}+\frac{259}{2}
\frac{16429}{333} को x=-\frac{5}{2}y+\frac{259}{2} में y के लिए प्रतिस्थापित करें. चूंकि परिणामी समीकरण में केवल एक चर शामिल है, आप सीधे x के लिए हल कर सकते हैं.
x=-\frac{82145}{666}+\frac{259}{2}
अंश के बार अंश से और हर के बराबर हर से गुणा करके -\frac{5}{2} का \frac{16429}{333} बार गुणा करें. फिर यदि संभव हो तो भिन्न को न्यूनतम पदों तक कम करें.
x=\frac{2051}{333}
सामान्य हरों का पता लगाकर और अंशों को जोड़कर \frac{259}{2} में -\frac{82145}{666} जोड़ें. फिर यदि संभव हो तो न्यूनतम पद के भिन्न को कम करें.
x=\frac{2051}{333},y=\frac{16429}{333}
अब सिस्टम का समाधान हो गया है.
2x+5y=259,199x-2y=1127
समीकरण को मानक रूप में रखें और फिर समीकरणों के सिस्टम को हल करने के लिए मैट्रिक्स का उपयोग करें.
\left(\begin{matrix}2&5\\199&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}259\\1127\end{matrix}\right)
समीकरणों को मैट्रिक्स रूप में लिखें.
inverse(\left(\begin{matrix}2&5\\199&-2\end{matrix}\right))\left(\begin{matrix}2&5\\199&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\199&-2\end{matrix}\right))\left(\begin{matrix}259\\1127\end{matrix}\right)
\left(\begin{matrix}2&5\\199&-2\end{matrix}\right) के प्रतिलोम मैट्रिक्स से समीकरण के बाईं ओर गुणा करें.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\199&-2\end{matrix}\right))\left(\begin{matrix}259\\1127\end{matrix}\right)
किसी मैट्रिक्स का गुणनफल और इसका प्रतिलोम पहचान मैट्रिक्स है.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\199&-2\end{matrix}\right))\left(\begin{matrix}259\\1127\end{matrix}\right)
बराबर चिह्न के बाएँ हाथ की ओर के मैट्रिक्स की गुणा करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-5\times 199}&-\frac{5}{2\left(-2\right)-5\times 199}\\-\frac{199}{2\left(-2\right)-5\times 199}&\frac{2}{2\left(-2\right)-5\times 199}\end{matrix}\right)\left(\begin{matrix}259\\1127\end{matrix}\right)
2\times 2 मैट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) के लिए, इनवर्स मैट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) है ताकि मैट्रिक्स समीकरण को मैट्रिक्स गुणन समस्या के रूप में फिर से लिखा जा सके.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{999}&\frac{5}{999}\\\frac{199}{999}&-\frac{2}{999}\end{matrix}\right)\left(\begin{matrix}259\\1127\end{matrix}\right)
अंकगणित करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{999}\times 259+\frac{5}{999}\times 1127\\\frac{199}{999}\times 259-\frac{2}{999}\times 1127\end{matrix}\right)
मैट्रिक्स का गुणा करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2051}{333}\\\frac{16429}{333}\end{matrix}\right)
अंकगणित करें.
x=\frac{2051}{333},y=\frac{16429}{333}
मैट्रिक्स तत्वों x और y को निकालना.
2x+5y=259,199x-2y=1127
घटाकर समाधान करने के लिए, दोनों समीकरणों में चरों में से किसी एक का गुणांक समान होना चाहिए ताकि जब एक समीकरण को दूसरे में से घटाया जाए, तो चर को रद्द किया जा सके.
199\times 2x+199\times 5y=199\times 259,2\times 199x+2\left(-2\right)y=2\times 1127
2x और 199x को बराबर करने के लिए, पहले समीकरण के दोनों ओर के सभी पदों को 199 से और दूसरे दोनों ओर के सभी पदों को 2 से गुणा करें.
398x+995y=51541,398x-4y=2254
सरल बनाएं.
398x-398x+995y+4y=51541-2254
बराबर चिह्न के दोनों ओर समान पदों को घटाकर 398x-4y=2254 में से 398x+995y=51541 को घटाएं.
995y+4y=51541-2254
398x में -398x को जोड़ें. केवल एक चर वाले समीकरण जिसका हल किया जा सकता है उसे छोड़कर पद 398x और -398x को विभाजित कर दिया गया है.
999y=51541-2254
995y में 4y को जोड़ें.
999y=49287
51541 में -2254 को जोड़ें.
y=\frac{16429}{333}
दोनों ओर 999 से विभाजन करें.
199x-2\times \frac{16429}{333}=1127
\frac{16429}{333} को 199x-2y=1127 में y के लिए प्रतिस्थापित करें. चूंकि परिणामी समीकरण में केवल एक चर शामिल है, आप सीधे x के लिए हल कर सकते हैं.
199x-\frac{32858}{333}=1127
-2 को \frac{16429}{333} बार गुणा करें.
199x=\frac{408149}{333}
समीकरण के दोनों ओर \frac{32858}{333} जोड़ें.
x=\frac{2051}{333}
दोनों ओर 199 से विभाजन करें.
x=\frac{2051}{333},y=\frac{16429}{333}
अब सिस्टम का समाधान हो गया है.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}