f, x, g, h, j, k, l, m, n, o के लिए हल करें
o=i
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
h=i
चौथी समीकरण पर विचार करें. किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
i=g
तीसरी समीकरण पर विचार करें. समीकरण में चर के ज्ञात मान सम्मिलित करें.
g=i
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
i=f\times 3
दूसरी समीकरण पर विचार करें. समीकरण में चर के ज्ञात मान सम्मिलित करें.
\frac{i}{3}=f
दोनों ओर 3 से विभाजन करें.
\frac{1}{3}i=f
\frac{1}{3}i प्राप्त करने के लिए i को 3 से विभाजित करें.
f=\frac{1}{3}i
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
\frac{1}{3}ix=x+3
पहली समीकरण पर विचार करें. समीकरण में चर के ज्ञात मान सम्मिलित करें.
\frac{1}{3}ix-x=3
दोनों ओर से x घटाएँ.
\left(-1+\frac{1}{3}i\right)x=3
\left(-1+\frac{1}{3}i\right)x प्राप्त करने के लिए \frac{1}{3}ix और -x संयोजित करें.
x=\frac{3}{-1+\frac{1}{3}i}
दोनों ओर -1+\frac{1}{3}i से विभाजन करें.
x=\frac{3\left(-1-\frac{1}{3}i\right)}{\left(-1+\frac{1}{3}i\right)\left(-1-\frac{1}{3}i\right)}
\frac{3}{-1+\frac{1}{3}i} के अंश और हर दोनों में, हर -1-\frac{1}{3}i के सम्मिश्र संयुग्मी से गुणा करें.
x=\frac{-3-i}{\frac{10}{9}}
\frac{3\left(-1-\frac{1}{3}i\right)}{\left(-1+\frac{1}{3}i\right)\left(-1-\frac{1}{3}i\right)} का गुणन करें.
x=-\frac{27}{10}-\frac{9}{10}i
-\frac{27}{10}-\frac{9}{10}i प्राप्त करने के लिए -3-i को \frac{10}{9} से विभाजित करें.
f=\frac{1}{3}i x=-\frac{27}{10}-\frac{9}{10}i g=i h=i j=i k=i l=i m=i n=i o=i
अब सिस्टम का समाधान हो गया है.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}