x, y, z के लिए हल करें
z=1
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
3x+x^{2}=x^{2}+2x+1
पहली समीकरण पर विचार करें. \left(x+1\right)^{2} को विस्तृत करने के लिए द्विपद प्रमेय \left(a+b\right)^{2}=a^{2}+2ab+b^{2} का उपयोग करें.
3x+x^{2}-x^{2}=2x+1
दोनों ओर से x^{2} घटाएँ.
3x=2x+1
0 प्राप्त करने के लिए x^{2} और -x^{2} संयोजित करें.
3x-2x=1
दोनों ओर से 2x घटाएँ.
x=1
x प्राप्त करने के लिए 3x और -2x संयोजित करें.
x=1 y=1 z=1
अब सिस्टम का समाधान हो गया है.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}