मुख्य सामग्री पर जाएं
x, y के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

x+y=3600,4x+2y=11000
प्रतिस्थापन का उपयोग करके समीकरणों के युग्म को हल करने के लिए, सबसे पहले चरों में से एक के लिए समीकरणों में से किसी एक को हल करें. फिर उस चर के परिणाम को अन्य समीकरण में से प्रतिस्थापित करें.
x+y=3600
समीकरणों में से कोई एक चुनें और इसे बराबर चिह्न के बाएँ हाथ की ओर x से पृथक् करके x से हल करें.
x=-y+3600
समीकरण के दोनों ओर से y घटाएं.
4\left(-y+3600\right)+2y=11000
अन्य समीकरण 4x+2y=11000 में -y+3600 में से x को घटाएं.
-4y+14400+2y=11000
4 को -y+3600 बार गुणा करें.
-2y+14400=11000
-4y में 2y को जोड़ें.
-2y=-3400
समीकरण के दोनों ओर से 14400 घटाएं.
y=1700
दोनों ओर -2 से विभाजन करें.
x=-1700+3600
1700 को x=-y+3600 में y के लिए प्रतिस्थापित करें. चूंकि परिणामी समीकरण में केवल एक चर शामिल है, आप सीधे x के लिए हल कर सकते हैं.
x=1900
3600 में -1700 को जोड़ें.
x=1900,y=1700
अब सिस्टम का समाधान हो गया है.
x+y=3600,4x+2y=11000
समीकरण को मानक रूप में रखें और फिर समीकरणों के सिस्टम को हल करने के लिए मैट्रिक्स का उपयोग करें.
\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3600\\11000\end{matrix}\right)
समीकरणों को मैट्रिक्स रूप में लिखें.
inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}3600\\11000\end{matrix}\right)
\left(\begin{matrix}1&1\\4&2\end{matrix}\right) के प्रतिलोम मैट्रिक्स से समीकरण के बाईं ओर गुणा करें.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}3600\\11000\end{matrix}\right)
किसी मैट्रिक्स का गुणनफल और इसका प्रतिलोम पहचान मैट्रिक्स है.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}3600\\11000\end{matrix}\right)
बराबर चिह्न के बाएँ हाथ की ओर के मैट्रिक्स की गुणा करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-4}&-\frac{1}{2-4}\\-\frac{4}{2-4}&\frac{1}{2-4}\end{matrix}\right)\left(\begin{matrix}3600\\11000\end{matrix}\right)
2\times 2 मैट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) के लिए, इनवर्स मैट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) है ताकि मैट्रिक्स समीकरण को मैट्रिक्स गुणन समस्या के रूप में फिर से लिखा जा सके.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3600\\11000\end{matrix}\right)
अंकगणित करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3600+\frac{1}{2}\times 11000\\2\times 3600-\frac{1}{2}\times 11000\end{matrix}\right)
मैट्रिक्स का गुणा करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1900\\1700\end{matrix}\right)
अंकगणित करें.
x=1900,y=1700
मैट्रिक्स तत्वों x और y को निकालना.
x+y=3600,4x+2y=11000
घटाकर समाधान करने के लिए, दोनों समीकरणों में चरों में से किसी एक का गुणांक समान होना चाहिए ताकि जब एक समीकरण को दूसरे में से घटाया जाए, तो चर को रद्द किया जा सके.
4x+4y=4\times 3600,4x+2y=11000
x और 4x को बराबर करने के लिए, पहले समीकरण के दोनों ओर के सभी पदों को 4 से और दूसरे दोनों ओर के सभी पदों को 1 से गुणा करें.
4x+4y=14400,4x+2y=11000
सरल बनाएं.
4x-4x+4y-2y=14400-11000
बराबर चिह्न के दोनों ओर समान पदों को घटाकर 4x+2y=11000 में से 4x+4y=14400 को घटाएं.
4y-2y=14400-11000
4x में -4x को जोड़ें. केवल एक चर वाले समीकरण जिसका हल किया जा सकता है उसे छोड़कर पद 4x और -4x को विभाजित कर दिया गया है.
2y=14400-11000
4y में -2y को जोड़ें.
2y=3400
14400 में -11000 को जोड़ें.
y=1700
दोनों ओर 2 से विभाजन करें.
4x+2\times 1700=11000
1700 को 4x+2y=11000 में y के लिए प्रतिस्थापित करें. चूंकि परिणामी समीकरण में केवल एक चर शामिल है, आप सीधे x के लिए हल कर सकते हैं.
4x+3400=11000
2 को 1700 बार गुणा करें.
4x=7600
समीकरण के दोनों ओर से 3400 घटाएं.
x=1900
दोनों ओर 4 से विभाजन करें.
x=1900,y=1700
अब सिस्टम का समाधान हो गया है.