मुख्य सामग्री पर जाएं
निश्चित गुणक की गणना करें
Tick mark Image
मूल्यांकन करें
Tick mark Image

साझा करें

det(\left(\begin{matrix}1&0&3\\2&3&4\\5&7&6\end{matrix}\right))
विकर्ण विधि का उपयोग करके मैट्रिक्स का निश्चित गुणक खोजें.
\left(\begin{matrix}1&0&3&1&0\\2&3&4&2&3\\5&7&6&5&7\end{matrix}\right)
पहले दो स्तंभों को चौथे और पाँचवें स्तंभों के रूप में दोहराकर मूल मैट्रिक्स को विस्तारित करें.
3\times 6+3\times 2\times 7=60
ऊपरी बाईं प्रविष्टि से प्रारंभ करते हुए, विकर्ण के साथ नीचे की ओर गुणित करें और परिणामी गुणनफल जोड़ें.
5\times 3\times 3+7\times 4=73
निचली बाईं प्रविष्टि से प्रारंभ करते हुए, विकर्ण से ऊपर की ओर गुणा करें और परिणामी गुणनफल जोड़ें.
60-73
आरोही विकर्ण गुणनफलों के योग को अवरोही विकर्ण गुणनफलों के योग में से घटाएं.
-13
60 में से 73 को घटाएं.
det(\left(\begin{matrix}1&0&3\\2&3&4\\5&7&6\end{matrix}\right))
लघु द्वारा विस्तारण की पद्धति का उपयोग करके मैट्रिक्स का निश्चित गुणक खोजें (इसे सहकारकों के विस्तारण के रूप में भी जाना जाता है).
det(\left(\begin{matrix}3&4\\7&6\end{matrix}\right))+3det(\left(\begin{matrix}2&3\\5&7\end{matrix}\right))
लघु द्वारा विस्तारण के लिए, प्रथम पंक्ति के प्रत्येक घटक को उसके लघु से गुणा करें, जो कि उस घटक वाली पंक्ति और स्तंभ को हटाने पर 2\times 2 मैट्रिक्स का निश्चित गुणक होता है, फिर घटक के स्थिति चिह्न से गुणा करें.
3\times 6-7\times 4+3\left(2\times 7-5\times 3\right)
2\times 2 मैट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) के लिए, निर्धारक ad-bc है.
-10+3\left(-1\right)
सरल बनाएं.
-13
अंतिम परिणाम प्राप्त करने के लिए पद को जोड़ें.