मुख्य सामग्री पर जाएं
मूल्यांकन करें
Tick mark Image
निश्चित गुणक की गणना करें
Tick mark Image

साझा करें

\left(\begin{matrix}3&-2\\3&-2\end{matrix}\right)\left(\begin{matrix}3&-2\\3&-2\end{matrix}\right)
मैट्रिक्स गुणन को परिभाषित किया जाता है यदि पहले मैट्रिक्स के स्तंभों की संख्या दूसरे मैट्रिक्स की पंक्तियों की संख्या के बराबर होती है.
\left(\begin{matrix}3\times 3-2\times 3&\\&\end{matrix}\right)
प्रथम मैट्रिक्स की प्रथम पंक्ति के प्रत्येक घटक को दूसरे मैट्रिक्स के पहला स्तंभ के संगत तत्व से गुणा करें और फिर इन गुणनफलों को प्राप्त करने के लिए तत्व में पहली पंक्ति में, गुणनफल मैट्रिक्स का पहला स्तंभ जोड़ें.
\left(\begin{matrix}3\times 3-2\times 3&3\left(-2\right)-2\left(-2\right)\\3\times 3-2\times 3&3\left(-2\right)-2\left(-2\right)\end{matrix}\right)
गुणनफल मैट्रिक्स के शेष तत्व उसी तरीके से मिलते हैं.
\left(\begin{matrix}9-6&-6+4\\9-6&-6+4\end{matrix}\right)
प्रत्येक घटक को व्यक्तिगत पद से गुणा करके सरल बनाएँ.
\left(\begin{matrix}3&-2\\3&-2\end{matrix}\right)
मैट्रिक्स के प्रत्येक घटक का योग करें.