मुख्य सामग्री पर जाएं
मूल्यांकन करें
Tick mark Image
गुणनखंड निकालें
Tick mark Image

वेब खोज से समान सवाल

साझा करें

det(\left(\begin{matrix}1&-16&19\\7&-6&13\\9&6&4\end{matrix}\right))
विकर्ण विधि का उपयोग करके मैट्रिक्स का निश्चित गुणक खोजें.
\left(\begin{matrix}1&-16&19&1&-16\\7&-6&13&7&-6\\9&6&4&9&6\end{matrix}\right)
पहले दो स्तंभों को चौथे और पाँचवें स्तंभों के रूप में दोहराकर मूल मैट्रिक्स को विस्तारित करें.
-6\times 4-16\times 13\times 9+19\times 7\times 6=-1098
ऊपरी बाईं प्रविष्टि से प्रारंभ करते हुए, विकर्ण के साथ नीचे की ओर गुणित करें और परिणामी गुणनफल जोड़ें.
9\left(-6\right)\times 19+6\times 13+4\times 7\left(-16\right)=-1396
निचली बाईं प्रविष्टि से प्रारंभ करते हुए, विकर्ण से ऊपर की ओर गुणा करें और परिणामी गुणनफल जोड़ें.
-1098-\left(-1396\right)
आरोही विकर्ण गुणनफलों के योग को अवरोही विकर्ण गुणनफलों के योग में से घटाएं.
298
-1098 में से -1396 को घटाएं.
det(\left(\begin{matrix}1&-16&19\\7&-6&13\\9&6&4\end{matrix}\right))
लघु द्वारा विस्तारण की पद्धति का उपयोग करके मैट्रिक्स का निश्चित गुणक खोजें (इसे सहकारकों के विस्तारण के रूप में भी जाना जाता है).
det(\left(\begin{matrix}-6&13\\6&4\end{matrix}\right))-\left(-16det(\left(\begin{matrix}7&13\\9&4\end{matrix}\right))\right)+19det(\left(\begin{matrix}7&-6\\9&6\end{matrix}\right))
लघु द्वारा विस्तारण के लिए, प्रथम पंक्ति के प्रत्येक घटक को उसके लघु से गुणा करें, जो कि उस घटक वाली पंक्ति और स्तंभ को हटाने पर 2\times 2 मैट्रिक्स का निश्चित गुणक होता है, फिर घटक के स्थिति चिह्न से गुणा करें.
-6\times 4-6\times 13-\left(-16\left(7\times 4-9\times 13\right)\right)+19\left(7\times 6-9\left(-6\right)\right)
2\times 2 मैट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) के लिए, निर्धारक ad-bc है.
-102-\left(-16\left(-89\right)\right)+19\times 96
सरल बनाएं.
298
अंतिम परिणाम प्राप्त करने के लिए पद को जोड़ें.