\left| \begin{array} { l l l } { 3 } & { 5 } & { 1 } \\ { x } & { 0 } & { 1 } \\ { - 4 } & { - 6 } & { 1 } \end{array} \right|
मूल्यांकन करें
-11x-2
w.r.t. x जोड़ें
-\frac{11x^{2}}{2}-2x+С
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
det(\left(\begin{matrix}3&5&1\\x&0&1\\-4&-6&1\end{matrix}\right))
विकर्ण विधि का उपयोग करके मैट्रिक्स का निश्चित गुणक खोजें.
\left(\begin{matrix}3&5&1&3&5\\x&0&1&x&0\\-4&-6&1&-4&-6\end{matrix}\right)
पहले दो स्तंभों को चौथे और पाँचवें स्तंभों के रूप में दोहराकर मूल मैट्रिक्स को विस्तारित करें.
5\left(-4\right)+x\left(-6\right)=-6x-20
ऊपरी बाईं प्रविष्टि से प्रारंभ करते हुए, विकर्ण के साथ नीचे की ओर गुणित करें और परिणामी गुणनफल जोड़ें.
-6\times 3+x\times 5=5x-18
निचली बाईं प्रविष्टि से प्रारंभ करते हुए, विकर्ण से ऊपर की ओर गुणा करें और परिणामी गुणनफल जोड़ें.
-6x-20-\left(5x-18\right)
आरोही विकर्ण गुणनफलों के योग को अवरोही विकर्ण गुणनफलों के योग में से घटाएं.
-11x-2
-20-6x में से -18+5x को घटाएं.
det(\left(\begin{matrix}3&5&1\\x&0&1\\-4&-6&1\end{matrix}\right))
लघु द्वारा विस्तारण की पद्धति का उपयोग करके मैट्रिक्स का निश्चित गुणक खोजें (इसे सहकारकों के विस्तारण के रूप में भी जाना जाता है).
3det(\left(\begin{matrix}0&1\\-6&1\end{matrix}\right))-5det(\left(\begin{matrix}x&1\\-4&1\end{matrix}\right))+det(\left(\begin{matrix}x&0\\-4&-6\end{matrix}\right))
लघु द्वारा विस्तारण के लिए, प्रथम पंक्ति के प्रत्येक घटक को उसके लघु से गुणा करें, जो कि उस घटक वाली पंक्ति और स्तंभ को हटाने पर 2\times 2 मैट्रिक्स का निश्चित गुणक होता है, फिर घटक के स्थिति चिह्न से गुणा करें.
3\left(-\left(-6\right)\right)-5\left(x-\left(-4\right)\right)+x\left(-6\right)
2\times 2 मैट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) के लिए, निर्धारक ad-bc है.
3\times 6-5\left(x+4\right)-6x
सरल बनाएं.
-11x-2
अंतिम परिणाम प्राप्त करने के लिए पद को जोड़ें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}