मुख्य सामग्री पर जाएं
मूल्यांकन करें
Tick mark Image
गुणनखंड निकालें
Tick mark Image

वेब खोज से समान सवाल

साझा करें

det(\left(\begin{matrix}2&-1&5\\3&1&-2\\1&4&6\end{matrix}\right))
विकर्ण विधि का उपयोग करके मैट्रिक्स का निश्चित गुणक खोजें.
\left(\begin{matrix}2&-1&5&2&-1\\3&1&-2&3&1\\1&4&6&1&4\end{matrix}\right)
पहले दो स्तंभों को चौथे और पाँचवें स्तंभों के रूप में दोहराकर मूल मैट्रिक्स को विस्तारित करें.
2\times 6-\left(-2\right)+5\times 3\times 4=74
ऊपरी बाईं प्रविष्टि से प्रारंभ करते हुए, विकर्ण के साथ नीचे की ओर गुणित करें और परिणामी गुणनफल जोड़ें.
5+4\left(-2\right)\times 2+6\times 3\left(-1\right)=-29
निचली बाईं प्रविष्टि से प्रारंभ करते हुए, विकर्ण से ऊपर की ओर गुणा करें और परिणामी गुणनफल जोड़ें.
74-\left(-29\right)
आरोही विकर्ण गुणनफलों के योग को अवरोही विकर्ण गुणनफलों के योग में से घटाएं.
103
74 में से -29 को घटाएं.
det(\left(\begin{matrix}2&-1&5\\3&1&-2\\1&4&6\end{matrix}\right))
लघु द्वारा विस्तारण की पद्धति का उपयोग करके मैट्रिक्स का निश्चित गुणक खोजें (इसे सहकारकों के विस्तारण के रूप में भी जाना जाता है).
2det(\left(\begin{matrix}1&-2\\4&6\end{matrix}\right))-\left(-det(\left(\begin{matrix}3&-2\\1&6\end{matrix}\right))\right)+5det(\left(\begin{matrix}3&1\\1&4\end{matrix}\right))
लघु द्वारा विस्तारण के लिए, प्रथम पंक्ति के प्रत्येक घटक को उसके लघु से गुणा करें, जो कि उस घटक वाली पंक्ति और स्तंभ को हटाने पर 2\times 2 मैट्रिक्स का निश्चित गुणक होता है, फिर घटक के स्थिति चिह्न से गुणा करें.
2\left(6-4\left(-2\right)\right)-\left(-\left(3\times 6-\left(-2\right)\right)\right)+5\left(3\times 4-1\right)
2\times 2 मैट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) के लिए, निर्धारक ad-bc है.
2\times 14-\left(-20\right)+5\times 11
सरल बनाएं.
103
अंतिम परिणाम प्राप्त करने के लिए पद को जोड़ें.