\left\{ \begin{array} { r } { 3 x - 4 y = - 1 } \\ { x - 6 y = - 5 } \end{array} \right.
x, y के लिए हल करें
x=1
y=1
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
3x-4y=-1,x-6y=-5
प्रतिस्थापन का उपयोग करके समीकरणों के युग्म को हल करने के लिए, सबसे पहले चरों में से एक के लिए समीकरणों में से किसी एक को हल करें. फिर उस चर के परिणाम को अन्य समीकरण में से प्रतिस्थापित करें.
3x-4y=-1
समीकरणों में से कोई एक चुनें और इसे बराबर चिह्न के बाएँ हाथ की ओर x से पृथक् करके x से हल करें.
3x=4y-1
समीकरण के दोनों ओर 4y जोड़ें.
x=\frac{1}{3}\left(4y-1\right)
दोनों ओर 3 से विभाजन करें.
x=\frac{4}{3}y-\frac{1}{3}
\frac{1}{3} को 4y-1 बार गुणा करें.
\frac{4}{3}y-\frac{1}{3}-6y=-5
अन्य समीकरण x-6y=-5 में \frac{4y-1}{3} में से x को घटाएं.
-\frac{14}{3}y-\frac{1}{3}=-5
\frac{4y}{3} में -6y को जोड़ें.
-\frac{14}{3}y=-\frac{14}{3}
समीकरण के दोनों ओर \frac{1}{3} जोड़ें.
y=1
समीकरण के दोनों ओर -\frac{14}{3} से विभाजित करें, जो भिन्न के व्युत्क्रमणों का दोनों ओर गुणा करने के समान है.
x=\frac{4-1}{3}
1 को x=\frac{4}{3}y-\frac{1}{3} में y के लिए प्रतिस्थापित करें. चूंकि परिणामी समीकरण में केवल एक चर शामिल है, आप सीधे x के लिए हल कर सकते हैं.
x=1
सामान्य हरों का पता लगाकर और अंशों को जोड़कर -\frac{1}{3} में \frac{4}{3} जोड़ें. फिर यदि संभव हो तो न्यूनतम पद के भिन्न को कम करें.
x=1,y=1
अब सिस्टम का समाधान हो गया है.
3x-4y=-1,x-6y=-5
समीकरण को मानक रूप में रखें और फिर समीकरणों के सिस्टम को हल करने के लिए मैट्रिक्स का उपयोग करें.
\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-5\end{matrix}\right)
समीकरणों को मैट्रिक्स रूप में लिखें.
inverse(\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right))\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right) के प्रतिलोम मैट्रिक्स से समीकरण के बाईं ओर गुणा करें.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
किसी मैट्रिक्स का गुणनफल और इसका प्रतिलोम पहचान मैट्रिक्स है.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
बराबर चिह्न के बाएँ हाथ की ओर के मैट्रिक्स की गुणा करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{3\left(-6\right)-\left(-4\right)}&-\frac{-4}{3\left(-6\right)-\left(-4\right)}\\-\frac{1}{3\left(-6\right)-\left(-4\right)}&\frac{3}{3\left(-6\right)-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-1\\-5\end{matrix}\right)
2\times 2 मैट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) के लिए, इनवर्स मैट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) है ताकि मैट्रिक्स समीकरण को मैट्रिक्स गुणन समस्या के रूप में फिर से लिखा जा सके.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&-\frac{2}{7}\\\frac{1}{14}&-\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}-1\\-5\end{matrix}\right)
अंकगणित करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\left(-1\right)-\frac{2}{7}\left(-5\right)\\\frac{1}{14}\left(-1\right)-\frac{3}{14}\left(-5\right)\end{matrix}\right)
मैट्रिक्स का गुणा करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
अंकगणित करें.
x=1,y=1
मैट्रिक्स तत्वों x और y को निकालना.
3x-4y=-1,x-6y=-5
घटाकर समाधान करने के लिए, दोनों समीकरणों में चरों में से किसी एक का गुणांक समान होना चाहिए ताकि जब एक समीकरण को दूसरे में से घटाया जाए, तो चर को रद्द किया जा सके.
3x-4y=-1,3x+3\left(-6\right)y=3\left(-5\right)
3x और x को बराबर करने के लिए, पहले समीकरण के दोनों ओर के सभी पदों को 1 से और दूसरे दोनों ओर के सभी पदों को 3 से गुणा करें.
3x-4y=-1,3x-18y=-15
सरल बनाएं.
3x-3x-4y+18y=-1+15
बराबर चिह्न के दोनों ओर समान पदों को घटाकर 3x-18y=-15 में से 3x-4y=-1 को घटाएं.
-4y+18y=-1+15
3x में -3x को जोड़ें. केवल एक चर वाले समीकरण जिसका हल किया जा सकता है उसे छोड़कर पद 3x और -3x को विभाजित कर दिया गया है.
14y=-1+15
-4y में 18y को जोड़ें.
14y=14
-1 में 15 को जोड़ें.
y=1
दोनों ओर 14 से विभाजन करें.
x-6=-5
1 को x-6y=-5 में y के लिए प्रतिस्थापित करें. चूंकि परिणामी समीकरण में केवल एक चर शामिल है, आप सीधे x के लिए हल कर सकते हैं.
x=1
समीकरण के दोनों ओर 6 जोड़ें.
x=1,y=1
अब सिस्टम का समाधान हो गया है.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}