\left\{ \begin{array} { l } { x = [ ( 2 y ) ^ { 2 } ( 3 y ) ^ { 3 } ] ^ { \frac { 1 } { 5 } } } \\ { y = \frac { 1 } { 2 } } \end{array} \right.
x, y के लिए हल करें
x = \frac{2 ^ {\frac{2}{5}} \cdot 3 ^ {\frac{3}{5}}}{2} \approx 1.275424501
y=\frac{1}{2}=0.5
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
x=\left(\left(2\times \frac{1}{2}\right)^{2}\times \left(3\times \frac{1}{2}\right)^{3}\right)^{\frac{1}{5}}
पहली समीकरण पर विचार करें. समीकरण में चर के ज्ञात मान सम्मिलित करें.
x=\left(1^{2}\times \left(3\times \frac{1}{2}\right)^{3}\right)^{\frac{1}{5}}
1 प्राप्त करने के लिए 2 और \frac{1}{2} का गुणा करें.
x=\left(1\times \left(3\times \frac{1}{2}\right)^{3}\right)^{\frac{1}{5}}
2 की घात की 1 से गणना करें और 1 प्राप्त करें.
x=\left(1\times \left(\frac{3}{2}\right)^{3}\right)^{\frac{1}{5}}
\frac{3}{2} प्राप्त करने के लिए 3 और \frac{1}{2} का गुणा करें.
x=\left(1\times \frac{27}{8}\right)^{\frac{1}{5}}
3 की घात की \frac{3}{2} से गणना करें और \frac{27}{8} प्राप्त करें.
x=\left(\frac{27}{8}\right)^{\frac{1}{5}}
\frac{27}{8} प्राप्त करने के लिए 1 और \frac{27}{8} का गुणा करें.
x=\sqrt[5]{\frac{27}{8}}
पदों को पुनः क्रमित करें.
x=\sqrt[5]{\frac{27}{8}} y=\frac{1}{2}
अब सिस्टम का समाधान हो गया है.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}