\left\{ \begin{array} { l } { 5 x - y = 110 } \\ { 9 y - x = 110 } \end{array} \right.
x, y के लिए हल करें
x=25
y=15
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
5x-y=110,-x+9y=110
प्रतिस्थापन का उपयोग करके समीकरणों के युग्म को हल करने के लिए, सबसे पहले चरों में से एक के लिए समीकरणों में से किसी एक को हल करें. फिर उस चर के परिणाम को अन्य समीकरण में से प्रतिस्थापित करें.
5x-y=110
समीकरणों में से कोई एक चुनें और इसे बराबर चिह्न के बाएँ हाथ की ओर x से पृथक् करके x से हल करें.
5x=y+110
समीकरण के दोनों ओर y जोड़ें.
x=\frac{1}{5}\left(y+110\right)
दोनों ओर 5 से विभाजन करें.
x=\frac{1}{5}y+22
\frac{1}{5} को y+110 बार गुणा करें.
-\left(\frac{1}{5}y+22\right)+9y=110
अन्य समीकरण -x+9y=110 में \frac{y}{5}+22 में से x को घटाएं.
-\frac{1}{5}y-22+9y=110
-1 को \frac{y}{5}+22 बार गुणा करें.
\frac{44}{5}y-22=110
-\frac{y}{5} में 9y को जोड़ें.
\frac{44}{5}y=132
समीकरण के दोनों ओर 22 जोड़ें.
y=15
समीकरण के दोनों ओर \frac{44}{5} से विभाजित करें, जो भिन्न के व्युत्क्रमणों का दोनों ओर गुणा करने के समान है.
x=\frac{1}{5}\times 15+22
15 को x=\frac{1}{5}y+22 में y के लिए प्रतिस्थापित करें. चूंकि परिणामी समीकरण में केवल एक चर शामिल है, आप सीधे x के लिए हल कर सकते हैं.
x=3+22
\frac{1}{5} को 15 बार गुणा करें.
x=25
22 में 3 को जोड़ें.
x=25,y=15
अब सिस्टम का समाधान हो गया है.
5x-y=110,-x+9y=110
समीकरण को मानक रूप में रखें और फिर समीकरणों के सिस्टम को हल करने के लिए मैट्रिक्स का उपयोग करें.
\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}110\\110\end{matrix}\right)
समीकरणों को मैट्रिक्स रूप में लिखें.
inverse(\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}110\\110\end{matrix}\right)
\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right) के प्रतिलोम मैट्रिक्स से समीकरण के बाईं ओर गुणा करें.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}110\\110\end{matrix}\right)
किसी मैट्रिक्स का गुणनफल और इसका प्रतिलोम पहचान मैट्रिक्स है.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}110\\110\end{matrix}\right)
बराबर चिह्न के बाएँ हाथ की ओर के मैट्रिक्स की गुणा करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{5\times 9-\left(-\left(-1\right)\right)}&-\frac{-1}{5\times 9-\left(-\left(-1\right)\right)}\\-\frac{-1}{5\times 9-\left(-\left(-1\right)\right)}&\frac{5}{5\times 9-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}110\\110\end{matrix}\right)
2\times 2 मैट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) के लिए, इनवर्स मैट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) है ताकि मैट्रिक्स समीकरण को मैट्रिक्स गुणन समस्या के रूप में फिर से लिखा जा सके.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{44}&\frac{1}{44}\\\frac{1}{44}&\frac{5}{44}\end{matrix}\right)\left(\begin{matrix}110\\110\end{matrix}\right)
अंकगणित करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{44}\times 110+\frac{1}{44}\times 110\\\frac{1}{44}\times 110+\frac{5}{44}\times 110\end{matrix}\right)
मैट्रिक्स का गुणा करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\15\end{matrix}\right)
अंकगणित करें.
x=25,y=15
मैट्रिक्स तत्वों x और y को निकालना.
5x-y=110,-x+9y=110
घटाकर समाधान करने के लिए, दोनों समीकरणों में चरों में से किसी एक का गुणांक समान होना चाहिए ताकि जब एक समीकरण को दूसरे में से घटाया जाए, तो चर को रद्द किया जा सके.
-5x-\left(-y\right)=-110,5\left(-1\right)x+5\times 9y=5\times 110
5x और -x को बराबर करने के लिए, पहले समीकरण के दोनों ओर के सभी पदों को -1 से और दूसरे दोनों ओर के सभी पदों को 5 से गुणा करें.
-5x+y=-110,-5x+45y=550
सरल बनाएं.
-5x+5x+y-45y=-110-550
बराबर चिह्न के दोनों ओर समान पदों को घटाकर -5x+45y=550 में से -5x+y=-110 को घटाएं.
y-45y=-110-550
-5x में 5x को जोड़ें. केवल एक चर वाले समीकरण जिसका हल किया जा सकता है उसे छोड़कर पद -5x और 5x को विभाजित कर दिया गया है.
-44y=-110-550
y में -45y को जोड़ें.
-44y=-660
-110 में -550 को जोड़ें.
y=15
दोनों ओर -44 से विभाजन करें.
-x+9\times 15=110
15 को -x+9y=110 में y के लिए प्रतिस्थापित करें. चूंकि परिणामी समीकरण में केवल एक चर शामिल है, आप सीधे x के लिए हल कर सकते हैं.
-x+135=110
9 को 15 बार गुणा करें.
-x=-25
समीकरण के दोनों ओर से 135 घटाएं.
x=25
दोनों ओर -1 से विभाजन करें.
x=25,y=15
अब सिस्टम का समाधान हो गया है.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}