मुख्य सामग्री पर जाएं
x, y के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

3x+y=8,2x+y=5
प्रतिस्थापन का उपयोग करके समीकरणों के युग्म को हल करने के लिए, सबसे पहले चरों में से एक के लिए समीकरणों में से किसी एक को हल करें. फिर उस चर के परिणाम को अन्य समीकरण में से प्रतिस्थापित करें.
3x+y=8
समीकरणों में से कोई एक चुनें और इसे बराबर चिह्न के बाएँ हाथ की ओर x से पृथक् करके x से हल करें.
3x=-y+8
समीकरण के दोनों ओर से y घटाएं.
x=\frac{1}{3}\left(-y+8\right)
दोनों ओर 3 से विभाजन करें.
x=-\frac{1}{3}y+\frac{8}{3}
\frac{1}{3} को -y+8 बार गुणा करें.
2\left(-\frac{1}{3}y+\frac{8}{3}\right)+y=5
अन्य समीकरण 2x+y=5 में \frac{-y+8}{3} में से x को घटाएं.
-\frac{2}{3}y+\frac{16}{3}+y=5
2 को \frac{-y+8}{3} बार गुणा करें.
\frac{1}{3}y+\frac{16}{3}=5
-\frac{2y}{3} में y को जोड़ें.
\frac{1}{3}y=-\frac{1}{3}
समीकरण के दोनों ओर से \frac{16}{3} घटाएं.
y=-1
दोनों ओर 3 से गुणा करें.
x=-\frac{1}{3}\left(-1\right)+\frac{8}{3}
-1 को x=-\frac{1}{3}y+\frac{8}{3} में y के लिए प्रतिस्थापित करें. चूंकि परिणामी समीकरण में केवल एक चर शामिल है, आप सीधे x के लिए हल कर सकते हैं.
x=\frac{1+8}{3}
-\frac{1}{3} को -1 बार गुणा करें.
x=3
सामान्य हरों का पता लगाकर और अंशों को जोड़कर \frac{8}{3} में \frac{1}{3} जोड़ें. फिर यदि संभव हो तो न्यूनतम पद के भिन्न को कम करें.
x=3,y=-1
अब सिस्टम का समाधान हो गया है.
3x+y=8,2x+y=5
समीकरण को मानक रूप में रखें और फिर समीकरणों के सिस्टम को हल करने के लिए मैट्रिक्स का उपयोग करें.
\left(\begin{matrix}3&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\5\end{matrix}\right)
समीकरणों को मैट्रिक्स रूप में लिखें.
inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}3&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
\left(\begin{matrix}3&1\\2&1\end{matrix}\right) के प्रतिलोम मैट्रिक्स से समीकरण के बाईं ओर गुणा करें.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
किसी मैट्रिक्स का गुणनफल और इसका प्रतिलोम पहचान मैट्रिक्स है.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
बराबर चिह्न के बाएँ हाथ की ओर के मैट्रिक्स की गुणा करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{3}{3-2}\end{matrix}\right)\left(\begin{matrix}8\\5\end{matrix}\right)
2\times 2 मैट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) के लिए, इनवर्स मैट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) है ताकि मैट्रिक्स समीकरण को मैट्रिक्स गुणन समस्या के रूप में फिर से लिखा जा सके.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}8\\5\end{matrix}\right)
अंकगणित करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8-5\\-2\times 8+3\times 5\end{matrix}\right)
मैट्रिक्स का गुणा करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
अंकगणित करें.
x=3,y=-1
मैट्रिक्स तत्वों x और y को निकालना.
3x+y=8,2x+y=5
घटाकर समाधान करने के लिए, दोनों समीकरणों में चरों में से किसी एक का गुणांक समान होना चाहिए ताकि जब एक समीकरण को दूसरे में से घटाया जाए, तो चर को रद्द किया जा सके.
3x-2x+y-y=8-5
बराबर चिह्न के दोनों ओर समान पदों को घटाकर 2x+y=5 में से 3x+y=8 को घटाएं.
3x-2x=8-5
y में -y को जोड़ें. केवल एक चर वाले समीकरण जिसका हल किया जा सकता है उसे छोड़कर पद y और -y को विभाजित कर दिया गया है.
x=8-5
3x में -2x को जोड़ें.
x=3
8 में -5 को जोड़ें.
2\times 3+y=5
3 को 2x+y=5 में x के लिए प्रतिस्थापित करें. चूंकि परिणामी समीकरण में केवल एक चर शामिल है, आप सीधे y के लिए हल कर सकते हैं.
6+y=5
2 को 3 बार गुणा करें.
y=-1
समीकरण के दोनों ओर से 6 घटाएं.
x=3,y=-1
अब सिस्टम का समाधान हो गया है.