मुख्य सामग्री पर जाएं
x, y के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

-4x-2y=-16,7x-5y=11
प्रतिस्थापन का उपयोग करके समीकरणों के युग्म को हल करने के लिए, सबसे पहले चरों में से एक के लिए समीकरणों में से किसी एक को हल करें. फिर उस चर के परिणाम को अन्य समीकरण में से प्रतिस्थापित करें.
-4x-2y=-16
समीकरणों में से कोई एक चुनें और इसे बराबर चिह्न के बाएँ हाथ की ओर x से पृथक् करके x से हल करें.
-4x=2y-16
समीकरण के दोनों ओर 2y जोड़ें.
x=-\frac{1}{4}\left(2y-16\right)
दोनों ओर -4 से विभाजन करें.
x=-\frac{1}{2}y+4
-\frac{1}{4} को -16+2y बार गुणा करें.
7\left(-\frac{1}{2}y+4\right)-5y=11
अन्य समीकरण 7x-5y=11 में -\frac{y}{2}+4 में से x को घटाएं.
-\frac{7}{2}y+28-5y=11
7 को -\frac{y}{2}+4 बार गुणा करें.
-\frac{17}{2}y+28=11
-\frac{7y}{2} में -5y को जोड़ें.
-\frac{17}{2}y=-17
समीकरण के दोनों ओर से 28 घटाएं.
y=2
समीकरण के दोनों ओर -\frac{17}{2} से विभाजित करें, जो भिन्न के व्युत्क्रमणों का दोनों ओर गुणा करने के समान है.
x=-\frac{1}{2}\times 2+4
2 को x=-\frac{1}{2}y+4 में y के लिए प्रतिस्थापित करें. चूंकि परिणामी समीकरण में केवल एक चर शामिल है, आप सीधे x के लिए हल कर सकते हैं.
x=-1+4
-\frac{1}{2} को 2 बार गुणा करें.
x=3
4 में -1 को जोड़ें.
x=3,y=2
अब सिस्टम का समाधान हो गया है.
-4x-2y=-16,7x-5y=11
समीकरण को मानक रूप में रखें और फिर समीकरणों के सिस्टम को हल करने के लिए मैट्रिक्स का उपयोग करें.
\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\11\end{matrix}\right)
समीकरणों को मैट्रिक्स रूप में लिखें.
inverse(\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right))\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right))\left(\begin{matrix}-16\\11\end{matrix}\right)
\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right) के प्रतिलोम मैट्रिक्स से समीकरण के बाईं ओर गुणा करें.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right))\left(\begin{matrix}-16\\11\end{matrix}\right)
किसी मैट्रिक्स का गुणनफल और इसका प्रतिलोम पहचान मैट्रिक्स है.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right))\left(\begin{matrix}-16\\11\end{matrix}\right)
बराबर चिह्न के बाएँ हाथ की ओर के मैट्रिक्स की गुणा करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-4\left(-5\right)-\left(-2\times 7\right)}&-\frac{-2}{-4\left(-5\right)-\left(-2\times 7\right)}\\-\frac{7}{-4\left(-5\right)-\left(-2\times 7\right)}&-\frac{4}{-4\left(-5\right)-\left(-2\times 7\right)}\end{matrix}\right)\left(\begin{matrix}-16\\11\end{matrix}\right)
2\times 2 मैट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) के लिए, इनवर्स मैट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) है ताकि मैट्रिक्स समीकरण को मैट्रिक्स गुणन समस्या के रूप में फिर से लिखा जा सके.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{34}&\frac{1}{17}\\-\frac{7}{34}&-\frac{2}{17}\end{matrix}\right)\left(\begin{matrix}-16\\11\end{matrix}\right)
अंकगणित करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{34}\left(-16\right)+\frac{1}{17}\times 11\\-\frac{7}{34}\left(-16\right)-\frac{2}{17}\times 11\end{matrix}\right)
मैट्रिक्स का गुणा करें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
अंकगणित करें.
x=3,y=2
मैट्रिक्स तत्वों x और y को निकालना.
-4x-2y=-16,7x-5y=11
घटाकर समाधान करने के लिए, दोनों समीकरणों में चरों में से किसी एक का गुणांक समान होना चाहिए ताकि जब एक समीकरण को दूसरे में से घटाया जाए, तो चर को रद्द किया जा सके.
7\left(-4\right)x+7\left(-2\right)y=7\left(-16\right),-4\times 7x-4\left(-5\right)y=-4\times 11
-4x और 7x को बराबर करने के लिए, पहले समीकरण के दोनों ओर के सभी पदों को 7 से और दूसरे दोनों ओर के सभी पदों को -4 से गुणा करें.
-28x-14y=-112,-28x+20y=-44
सरल बनाएं.
-28x+28x-14y-20y=-112+44
बराबर चिह्न के दोनों ओर समान पदों को घटाकर -28x+20y=-44 में से -28x-14y=-112 को घटाएं.
-14y-20y=-112+44
-28x में 28x को जोड़ें. केवल एक चर वाले समीकरण जिसका हल किया जा सकता है उसे छोड़कर पद -28x और 28x को विभाजित कर दिया गया है.
-34y=-112+44
-14y में -20y को जोड़ें.
-34y=-68
-112 में 44 को जोड़ें.
y=2
दोनों ओर -34 से विभाजन करें.
7x-5\times 2=11
2 को 7x-5y=11 में y के लिए प्रतिस्थापित करें. चूंकि परिणामी समीकरण में केवल एक चर शामिल है, आप सीधे x के लिए हल कर सकते हैं.
7x-10=11
-5 को 2 बार गुणा करें.
7x=21
समीकरण के दोनों ओर 10 जोड़ें.
x=3
दोनों ओर 7 से विभाजन करें.
x=3,y=2
अब सिस्टम का समाधान हो गया है.