मुख्य सामग्री पर जाएं
मूल्यांकन करें
Tick mark Image

वेब खोज से समान सवाल

साझा करें

\int x^{3}+2x+1\mathrm{d}x
अनिश्चित समाकलन का प्रथम मूल्यांकन करें.
\int x^{3}\mathrm{d}x+\int 2x\mathrm{d}x+\int 1\mathrm{d}x
अवधि के अनुसार योग टर्म को एकीकृत करें.
\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x+\int 1\mathrm{d}x
प्रत्येक पद के स्थिरांक के गुणनखंड बनाएँ.
\frac{x^{4}}{4}+2\int x\mathrm{d}x+\int 1\mathrm{d}x
k\neq -1 के लिए \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} के बाद से \int x^{3}\mathrm{d}x को \frac{x^{4}}{4} से प्रतिस्थापित करें.
\frac{x^{4}}{4}+x^{2}+\int 1\mathrm{d}x
k\neq -1 के लिए \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} के बाद से \int x\mathrm{d}x को \frac{x^{2}}{2} से प्रतिस्थापित करें. 2 को \frac{x^{2}}{2} बार गुणा करें.
\frac{x^{4}}{4}+x^{2}+x
\int a\mathrm{d}x=ax सामान्य अभिंन नियम की तालिका का उपयोग करके 1 का अभिंन ढूँढें.
\frac{9^{4}}{4}+9^{2}+9-\left(\frac{4^{4}}{4}+4^{2}+4\right)
निश्चित समाकलन वह है जब एकीकरण की ऊपरी सीमा पर मूल्यांकित व्यंजक के प्रतिअवकलज में से एकीकरण की निचली सीमा पर मूल्यांकित प्रतिअवकलज को घटा दिया जाता है.
\frac{6585}{4}
सरल बनाएं.