मुख्य सामग्री पर जाएं
मूल्यांकन करें
Tick mark Image

वेब खोज से समान सवाल

साझा करें

\int x^{2}-6x+5\mathrm{d}x
अनिश्चित समाकलन का प्रथम मूल्यांकन करें.
\int x^{2}\mathrm{d}x+\int -6x\mathrm{d}x+\int 5\mathrm{d}x
अवधि के अनुसार योग टर्म को एकीकृत करें.
\int x^{2}\mathrm{d}x-6\int x\mathrm{d}x+\int 5\mathrm{d}x
प्रत्येक पद के स्थिरांक के गुणनखंड बनाएँ.
\frac{x^{3}}{3}-6\int x\mathrm{d}x+\int 5\mathrm{d}x
k\neq -1 के लिए \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} के बाद से \int x^{2}\mathrm{d}x को \frac{x^{3}}{3} से प्रतिस्थापित करें.
\frac{x^{3}}{3}-3x^{2}+\int 5\mathrm{d}x
k\neq -1 के लिए \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} के बाद से \int x\mathrm{d}x को \frac{x^{2}}{2} से प्रतिस्थापित करें. -6 को \frac{x^{2}}{2} बार गुणा करें.
\frac{x^{3}}{3}-3x^{2}+5x
\int a\mathrm{d}x=ax सामान्य अभिंन नियम की तालिका का उपयोग करके 5 का अभिंन ढूँढें.
\frac{5^{3}}{3}-3\times 5^{2}+5\times 5-\left(\frac{1^{3}}{3}-3\times 1^{2}+5\times 1\right)
निश्चित समाकलन वह है जब एकीकरण की ऊपरी सीमा पर मूल्यांकित व्यंजक के प्रतिअवकलज में से एकीकरण की निचली सीमा पर मूल्यांकित प्रतिअवकलज को घटा दिया जाता है.
-\frac{32}{3}
सरल बनाएं.