मूल्यांकन करें
\left\{\begin{matrix}\frac{a^{a}-1}{\ln(a)a^{a}},&a>0\text{ and }a\neq 1\\a,&a=1\end{matrix}\right.
w.r.t. a घटाएँ
\left\{\begin{matrix}\frac{a^{-a-1}\left(a\ln(a)^{2}-a^{a}+a\ln(a)+1\right)}{\ln(a)^{2}},&a>0\text{ and }a\neq 1\\1,&a=1\end{matrix}\right.
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}