मूल्यांकन करें
\frac{2\sqrt{6}x^{\frac{3}{2}}}{3}+С
w.r.t. x घटाएँ
\sqrt{6x}
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
\sqrt{6}\int \sqrt{x}\mathrm{d}x
\int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x का उपयोग करके स्थिरांक को भाज्य करें.
\sqrt{6}\times \frac{2x^{\frac{3}{2}}}{3}
\sqrt{x} को x^{\frac{1}{2}} के रूप में फिर से लिखें. k\neq -1 के लिए \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} के बाद से \int x^{\frac{1}{2}}\mathrm{d}x को \frac{x^{\frac{3}{2}}}{\frac{3}{2}} से प्रतिस्थापित करें. सरल बनाएं.
\frac{2\sqrt{6}x^{\frac{3}{2}}}{3}
सरल बनाएं.
\frac{2\sqrt{6}x^{\frac{3}{2}}}{3}+С
यदि F\left(x\right) f\left(x\right) का प्रतिअवकलज है, तो F\left(x\right)+C द्वारा f\left(x\right) के सभी antiderivatives का सेट दिया गया है. इसलिए, परिणाम में एकीकरण C\in \mathrm{R} की स्थिरांक जोड़ें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}