मुख्य सामग्री पर जाएं
मूल्यांकन करें
Tick mark Image
w.r.t. x घटाएँ
Tick mark Image

वेब खोज से समान सवाल

साझा करें

\pi \int x\mathrm{d}x
\int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x का उपयोग करके स्थिरांक को भाज्य करें.
\pi \times \frac{x^{2}}{2}
k\neq -1 के लिए \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} के बाद से \int x\mathrm{d}x को \frac{x^{2}}{2} से प्रतिस्थापित करें.
\frac{\pi x^{2}}{2}
सरल बनाएं.
\frac{\pi x^{2}}{2}+С
यदि F\left(x\right) f\left(x\right) का प्रतिअवकलज है, तो F\left(x\right)+C द्वारा f\left(x\right) के सभी antiderivatives का सेट दिया गया है. इसलिए, परिणाम में एकीकरण C\in \mathrm{R} की स्थिरांक जोड़ें.