x के लिए हल करें
x=-4
x=1
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
3\times 2+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
चर x, -2 के बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों ओर 3\left(x+2\right) से गुणा करें, जो कि x+2,3 का लघुत्तम समापवर्तक है.
6+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
6 प्राप्त करने के लिए 3 और 2 का गुणा करें.
6-\left(x+2\right)=\left(x+2\right)x
-1 प्राप्त करने के लिए 3 और -\frac{1}{3} का गुणा करें.
6-x-2=\left(x+2\right)x
x+2 का विपरीत ढूँढने के लिए, प्रत्येक पद का विपरीत ढूँढें.
4-x=\left(x+2\right)x
4 प्राप्त करने के लिए 2 में से 6 घटाएं.
4-x=x^{2}+2x
x से x+2 गुणा करने हेतु बंटन के गुण का उपयोग करें.
4-x-x^{2}=2x
दोनों ओर से x^{2} घटाएँ.
4-x-x^{2}-2x=0
दोनों ओर से 2x घटाएँ.
4-3x-x^{2}=0
-3x प्राप्त करने के लिए -x और -2x संयोजित करें.
-x^{2}-3x+4=0
बहुपद को मानक रूप में रखने के लिए इसे पुनर्व्यवस्थित करें. टर्म को उच्चतम से निम्नतम घात के क्रम में रखें.
a+b=-3 ab=-4=-4
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर -x^{2}+ax+bx+4 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,-4 2,-2
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b ऋणात्मक है, इसलिए ऋणात्मक संख्या में धनात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -4 देते हैं.
1-4=-3 2-2=0
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=1 b=-4
हल वह जोड़ी है जो -3 योग देती है.
\left(-x^{2}+x\right)+\left(-4x+4\right)
-x^{2}-3x+4 को \left(-x^{2}+x\right)+\left(-4x+4\right) के रूप में फिर से लिखें.
x\left(-x+1\right)+4\left(-x+1\right)
पहले समूह में x के और दूसरे समूह में 4 को गुणनखंड बनाएँ.
\left(-x+1\right)\left(x+4\right)
विभाजन के गुण का उपयोग करके सामान्य पद -x+1 के गुणनखंड बनाएँ.
x=1 x=-4
समीकरण समाधानों को ढूँढने के लिए, -x+1=0 और x+4=0 को हल करें.
3\times 2+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
चर x, -2 के बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों ओर 3\left(x+2\right) से गुणा करें, जो कि x+2,3 का लघुत्तम समापवर्तक है.
6+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
6 प्राप्त करने के लिए 3 और 2 का गुणा करें.
6-\left(x+2\right)=\left(x+2\right)x
-1 प्राप्त करने के लिए 3 और -\frac{1}{3} का गुणा करें.
6-x-2=\left(x+2\right)x
x+2 का विपरीत ढूँढने के लिए, प्रत्येक पद का विपरीत ढूँढें.
4-x=\left(x+2\right)x
4 प्राप्त करने के लिए 2 में से 6 घटाएं.
4-x=x^{2}+2x
x से x+2 गुणा करने हेतु बंटन के गुण का उपयोग करें.
4-x-x^{2}=2x
दोनों ओर से x^{2} घटाएँ.
4-x-x^{2}-2x=0
दोनों ओर से 2x घटाएँ.
4-3x-x^{2}=0
-3x प्राप्त करने के लिए -x और -2x संयोजित करें.
-x^{2}-3x+4=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न -1, b के लिए -3 और द्विघात सूत्र में c के लिए 4, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\times 4}}{2\left(-1\right)}
वर्गमूल -3.
x=\frac{-\left(-3\right)±\sqrt{9+4\times 4}}{2\left(-1\right)}
-4 को -1 बार गुणा करें.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2\left(-1\right)}
4 को 4 बार गुणा करें.
x=\frac{-\left(-3\right)±\sqrt{25}}{2\left(-1\right)}
9 में 16 को जोड़ें.
x=\frac{-\left(-3\right)±5}{2\left(-1\right)}
25 का वर्गमूल लें.
x=\frac{3±5}{2\left(-1\right)}
-3 का विपरीत 3 है.
x=\frac{3±5}{-2}
2 को -1 बार गुणा करें.
x=\frac{8}{-2}
± के धन में होने पर अब समीकरण x=\frac{3±5}{-2} को हल करें. 3 में 5 को जोड़ें.
x=-4
-2 को 8 से विभाजित करें.
x=-\frac{2}{-2}
± के ऋण में होने पर अब समीकरण x=\frac{3±5}{-2} को हल करें. 3 में से 5 को घटाएं.
x=1
-2 को -2 से विभाजित करें.
x=-4 x=1
अब समीकरण का समाधान हो गया है.
3\times 2+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
चर x, -2 के बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों ओर 3\left(x+2\right) से गुणा करें, जो कि x+2,3 का लघुत्तम समापवर्तक है.
6+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
6 प्राप्त करने के लिए 3 और 2 का गुणा करें.
6-\left(x+2\right)=\left(x+2\right)x
-1 प्राप्त करने के लिए 3 और -\frac{1}{3} का गुणा करें.
6-x-2=\left(x+2\right)x
x+2 का विपरीत ढूँढने के लिए, प्रत्येक पद का विपरीत ढूँढें.
4-x=\left(x+2\right)x
4 प्राप्त करने के लिए 2 में से 6 घटाएं.
4-x=x^{2}+2x
x से x+2 गुणा करने हेतु बंटन के गुण का उपयोग करें.
4-x-x^{2}=2x
दोनों ओर से x^{2} घटाएँ.
4-x-x^{2}-2x=0
दोनों ओर से 2x घटाएँ.
4-3x-x^{2}=0
-3x प्राप्त करने के लिए -x और -2x संयोजित करें.
-3x-x^{2}=-4
दोनों ओर से 4 घटाएँ. शून्य में से कुछ भी घटाने पर इसका ऋणात्मक मान प्राप्त होता है.
-x^{2}-3x=-4
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
\frac{-x^{2}-3x}{-1}=-\frac{4}{-1}
दोनों ओर -1 से विभाजन करें.
x^{2}+\left(-\frac{3}{-1}\right)x=-\frac{4}{-1}
-1 से विभाजित करना -1 से गुणा करने को पूर्ववत् करता है.
x^{2}+3x=-\frac{4}{-1}
-1 को -3 से विभाजित करें.
x^{2}+3x=4
-1 को -4 से विभाजित करें.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}
\frac{3}{2} प्राप्त करने के लिए x पद के गुणांक 3 को 2 से भाग दें. फिर समीकरण के दोनों ओर \frac{3}{2} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+3x+\frac{9}{4}=4+\frac{9}{4}
भिन्न के अंश और हर दोनों का वर्गमूल करके \frac{3}{2} का वर्ग करें.
x^{2}+3x+\frac{9}{4}=\frac{25}{4}
4 में \frac{9}{4} को जोड़ें.
\left(x+\frac{3}{2}\right)^{2}=\frac{25}{4}
गुणक x^{2}+3x+\frac{9}{4}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
समीकरण के दोनों ओर का वर्गमूल लें.
x+\frac{3}{2}=\frac{5}{2} x+\frac{3}{2}=-\frac{5}{2}
सरल बनाएं.
x=1 x=-4
समीकरण के दोनों ओर से \frac{3}{2} घटाएं.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}