मूल्यांकन करें
\frac{2}{59}\approx 0.033898305
गुणनखंड निकालें
\frac{2}{59} = 0.03389830508474576
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
\frac{142}{4189}+\frac{1475}{4189}-\frac{25}{71}
59 और 71 का लघुत्तम समापवर्त्य 4189 है. \frac{2}{59} और \frac{25}{71} को 4189 हर वाले भिन्न में रूपांतरित करें.
\frac{142+1475}{4189}-\frac{25}{71}
चूँकि \frac{142}{4189} और \frac{1475}{4189} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{1617}{4189}-\frac{25}{71}
1617 को प्राप्त करने के लिए 142 और 1475 को जोड़ें.
\frac{1617}{4189}-\frac{1475}{4189}
4189 और 71 का लघुत्तम समापवर्त्य 4189 है. \frac{1617}{4189} और \frac{25}{71} को 4189 हर वाले भिन्न में रूपांतरित करें.
\frac{1617-1475}{4189}
चूँकि \frac{1617}{4189} और \frac{1475}{4189} का एक ही भाजक है, इसलिए उनके भाजकों को घटाकर उन्हें घटाएँ.
\frac{142}{4189}
142 प्राप्त करने के लिए 1475 में से 1617 घटाएं.
\frac{2}{59}
71 को निकालकर और रद्द करके भिन्न \frac{142}{4189} को न्यूनतम पदों तक कम करें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}